ComfyUI 进阶篇!完整梳理 ComfyUI 的核心节点

img

前言:

学习 ComfyUI 是一场持久战。当你掌握了 ComfyUI 的安装和运行之后,会发现大量五花八门的节点。面对各种各样的工作流和复杂的节点种类,可能会让人感到不知所措。在这篇文章中,我们将用通俗易懂的语言对 ComfyUI 的核心节点进行系统梳理,并详细解释每个参数。希望大家在学习过程中培养自我思考的能力,真正掌握和理解各个节点的用法与功能。在实践中不断提升自己的技术水平。只有通过不断的探索和总结,才能在面对复杂的工作流时游刃有余。祝大家学习顺利,早日成为 ComfyUI 的高手!

一、Apply Controlnet 节点

该节点用于在生成图像的过程中应用控制网络(ControlNet)

img

输入:

Conditioning → 接收传入的条件信息,比如通过CLIP Text Encode (Prompt)处理后的文本信息,用于指导图像生成过程

control_net → 加载ControlNet模型。注意, Stable Diffusion (SD)模型和Stable Diffusion XL(SDXL)模型对应的ControlNet模型是不同的。

image → 加载经过预处理的图片。在此步骤中,输入的图片已经过预处理,而不是原始图像。
参数:

strength → 控制权重程度。数值越高,约束越强;数值越低,约束越弱。

输出:

CONDITIONING → 输出包含混入ControlNet信息的条件信息流。

应用场景

  1. 图像修复:通过参考控制图像,修复原始图像的缺陷。
  2. 图像风格转换:将一张图像的风格应用到另一张图像。
  3. 图像合成:结合多个图像元素生成新的图像。
  4. 个性化定制:根据用户提供的控制输入,生成特定风格或内容的图像。

通过 Apply Controlnet 节点,可以在图像生成过程中引入更多的控制,从而生成更加精确和符合预期的图像效果这对于需要高质量和高度定制化图像的应用场景非常有用。

二、Conditioning Average 节点

该节点用于合并多个条件信息流,生成一个平均条件信息流。这在多个条件输入需要整合时特别有用,如将多条文本提示或其他控制信号组合起来。

img

输入:

conditioning_to → 需要进行整合的条件信息之一

conditioning_from → 需要进行整合的条件信息之一

参数:

conditioning_to_strngth → 设置信息整合的强度

输出:

CONDITIONING → 输出信息整合之后的条件信息

注意:当 conditioning_to_strength 为 1 时,图像生成过程将完全受到 conditioning_to 的影响,而 conditioning_from 的影响将被忽略。反之,当 conditioning_to_strength 为 0 时,图像生成将只受 conditioning_from 的影响,conditioning_to 的影响则不会起作用。

img

img

注意:当 conditioning_to_strength 为 0.5 时,图像生成的结果将会受到 conditioning_to 和 conditioning_from 两个条件的影响,它们的权重相等。这种情况下,生成的图像可能会展现出两个条件之间的竞争或者混合的特征。例如,在一个包含"green"和"dragon"这两个条件的情境中,生成的图像可能会显示出这两种特征的一种效果或者混合的效果

Green 效果

img

Dragon 效果

img

混合效果

img

应用场景

  1. 多文本提示:将多个文本提示的条件信息流合并为一个,综合各种提示的效果进行图像生成。
  2. 多控制信号:整合来自不同控制信号的条件信息,以生成更复杂或更平衡的图像效果。

通过 Conditioning Average 节点,用户可以灵活地组合多个条件输入,提高图像生成的多样性和灵活性。

三、 Conditioning(Set Area) 节点

该节点用于设置图像生成过程中特定区域的条件或者属性,以控制生成图像的局部特征或者风格

img

输入:

conditioning → 接收传来的条件信息

输出:

CONDITIONING → 进行条件限制之后输出的条件信息

参数:

width → 控制区域的宽度

height → 控制区域的高度

x → 控制区域原点的x坐标

y → 控制区域原点的y坐标

strength → 表示条件信息的强度

注意:在 ComfyUI 中坐标系的原点是在节点的左上角。

img

应用场景

  1. 局部特征调整:针对图像中的特定部分调整颜色、对比度或者其他视觉属性。
  2. 局部风格控制:在图像生成过程中,控制特定区域的风格或者外观,以达到定制化或者特定效果。
  3. 复杂合成:将多个条件设置节点结合使用,以实现复杂的局部图像合成或者调整。

通过 Conditioning(Set Area)节点,可以精确控制图像生成过程中特定区域的表现,从而增强生成图像的定制性和表现力。

四、 Conditioning(Combine) 节点

该节点用于将多个条件信息流合并为一个单一的条件信息流,以用于控制图像生成过程中的各个方面。

img

输入:

conditioning_1 → 需要进行信息整合的条件信息之一

conditioning_2 → 需要进行信息整合的条件信息之一

输出:

CONDITIONING → 输出整合之后的条件信息

结合 Conditioning(Set Area)节点和 Conditioning(Combine)节点,如图所示,设置 1024*512 的图像可以将其左边分配给 1boy 提示词,将右边分配给 1 girl 提示词,从而生成一张两个区域都满足条件的图像。

img

应用场景

  1. 多源条件整合:从多个文本提示、控制信号或者其他数据源整合条件,以实现复杂的图像生成控制。
  2. 灵活控制:根据不同的需求场景和用户输入,动态调整生成图像的特征和风格。
  3. 定制化生成:为特定的应用或者用户需求,创建高度定制化的图像生成方案。

通过 Conditioning(Combine)节点,用户可以在图像生成过程中集成和整合多种条件输入,以实现更精确和多样化的图像生成效果。

五、Image Blur 节点

该节点用于对输入的图像进行模糊处理,以改变图像的视觉效果或者减少图像中的细节,通常用于创建柔和或者抽象化的视觉效果。

img

输入:

images → 接收输入的图像

输出:

IMAGE → 输出模糊后的图像

参数:

blur_radius → 输入模糊的高斯半径

sigma → 该值越小,模糊的像素越接近中心

img

应用场景

  1. 艺术效果:通过模糊处理来创建抽象化或者柔和的艺术效果。
  2. 背景处理:用于减少背景中的细节,突出前景对象。
  3. 视觉平滑:在视觉设计中用于平滑图像以减少视觉杂乱或者强调主题。

通过 Image Blur 节点,可以根据需求调整图像的外观,使其更符合艺术创作或者设计需求。

六、Image Sharpen 节点

该节点用于增强图像的清晰度和细节,通常用于提升图像的视觉效果和边缘锐化。

img

输入:

image → 需要进行锐化的原始图像

输出:

IMAGE → 输出锐化后的图像

参数:

sharpen_radius → 表示锐化的半径

sigma → 该值越小,锐化的像素越接近中心像素

alpha → 锐化的强度

img

应用场景

  1. 摄影后期处理:用于增强照片中的细节和清晰度,使图像更生动和有吸引力。
  2. 图像分析:在科学和工程领域中,用于增强图像以便更好地识别和分析特定的结构或对象。
  3. 艺术效果:在艺术创作中,用于调整图像的视觉效果,以达到更良好的视觉冲击力或者审美效果。

通过 Image Sharpen 节点,可以定制化地调整图像的清晰度和细节,以满足不同的美学和功能需求。

七、Image Quantize 节点

该节点用于将输入的图像进行量化处理,即将图像中的颜色数目减少到较少的色彩级别。

img

输入:

image → 接收需要调整的图像

输出:

IMAGE → 输出调整之后的图像

参数:

colors → 表示量化后图像包含的颜色数量(颜色数量最小为1,最大位256)

dither → 添加抖动效果,使图像在量化后更加平滑

不开启抖动

img

开启抖动

img

应用场景

  1. 艺术风格化:通过减少颜色数量,创建抽象或者卡通风格的图像效果。
  2. 图像压缩:减少图像文件大小,以节省存储空间或者加快图像传输速度。
  3. 特定效果:在某些视觉设计中,可以使用色彩量化来增强特定图像效果或者降低处理复杂度。

通过 Image Quantize 节点,可以调整图像的色彩级别,从而控制图像的视觉表现和处理效率。

八、Image Blend 节点

该节点用于将两幅图像混合在一起,生成一个结合了两幅图像特征的图像。

img

输入:

image_1 → 需要混合的第一幅图像

image_2 → 需要混合的第二幅图像

输出:

image → 混合后的图像输出

参数:

blend_factor → 混合因子,控制两幅图像的混合比例。值为0.0时,输出图像完全由image1决定;值为1.0时,输出图像完全由image2决定。值为0.5时,两幅图像各占一半权重。

blend_mode → 混合模式,定义两幅图像如何混合,有多个模式可选择,以下是常见的混合模式:

normal:正常混合,即按 blend_factor 的比例线性混合两幅图像。

img

multiply:乘法混合,结果图像的颜色值是两幅图像对应像素颜色值的乘积。

img

screen:屏幕混合,结果图像的颜色值是反转两幅图像对应像素颜色值的乘积的反转。

img

应用场景

  1. 艺术创作:将不同风格或元素的图像混合在一起,创造独特的艺术效果。
  2. 图像合成:在图像处理过程中,合成不同来源的图像,生成具有特殊效果的图像。
  3. 视觉特效:在影视、游戏等领域,利用图像混合技术创建逼真的视觉特效。

通过 Image Blend 节点,可以灵活地将两幅图像融合在一起,调整混合比例和模式,以实现丰富多样的图像处理效果。

九、区域控制示例工作流

熟练使用以上节点,你就可以搭建第一个“区域控制”工作流了。

img

这里使用 SD1.5 的大模型,通过 Conditioning(Set Area)节点控制图片生成区域,然后通过 Conditioning(Combine)节点进行条件合并,然后使用三个正向提示词来控制不同区域,最终出图如下所示:

img

孜孜以求,方能超越自我。坚持不懈,乃是成功关键。

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

一、ComfyUI配置指南
  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

二、ComfyUI基础入门
  • 软件安装篇
  • 插件安装篇

三、 ComfyUI工作流节点/底层逻辑详解
  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

四、ComfyUI节点技巧进阶/多模型串联
  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

在这里插入图片描述

五、ComfyUI遮罩修改重绘/Inpenting模块详解
  • 图像分辨率
  • 姿势

在这里插入图片描述

六、ComfyUI超实用SDXL工作流手把手搭建
  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

在这里插入图片描述

在这里插入图片描述

这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

### ComfyUI 高级用法与配置 ComfyUI 是一种基于节点工作流界面工具,用于生成图像和其他媒体内容。其灵活性和可扩展性使得它成为许多用户的首选工具之一。以下是关于 ComfyUI 的一些高级用法和配置方法: #### 节点自定义 用户可以通过创建自己的 Python 文件来自定义节点[^1]。这些文件可以放置在 `custom_nodes` 文件夹中。通过这种方式,用户能够实现特定的功能需求或者优化现有的工作流程。 ```python from nodes import * class MyCustomNode: @classmethod def INPUT_TYPES(cls): return { "required": { "input_value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0}), }, } RETURN_TYPES = ("FLOAT",) FUNCTION = "execute" CATEGORY = "my_custom_category" def execute(self, input_value): output = input_value * 2 return (output,) ``` 上述代码展示了一个简单的自定义节点例子,该节点接收一个浮点数作为输入并将其乘以二后返回。 #### 性能调优 为了提高性能,在运行大型模型或多任务处理时,建议调整 GPU 和 CPU 使用设置。这通常涉及修改环境变量以及 PyTorch 或 TensorFlow 的相关参数。 例如,可以在启动脚本前加入如下命令来控制显存分配: ```bash export PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128 ``` 此操作有助于减少内存碎片化问题,从而改善整体效率。 #### 插件支持 除了核心功能外,还有多种第三方插件可供安装以增强用户体验。比如 AnimateDiff 可用来制作动画效果;而 ControlNet 则允许更精确地操控生成图片中的某些特征。 对于希望进一步探索 ComfyUI 功能的人来说,深入研究官方文档和支持社区是非常有益的途径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值