AI 绘画,相信大家都已颇为熟悉。虽然 AI 绘画出图较为便捷,但要使其生成一幅令自己满意的图像,着实需要耗费一番精力。
有时即便多次调整关键词,也难以生成自己期望的画面。
这些问题一直以来都是 AI 绘画的痛点所在。
然而,一款名为 “ControlNet” 的 AI 绘画插件横空出世,几乎可以说是完美地解决了 AI 绘画的痛点。它能够近乎做到对画面的完美控制。
比如下面这张,哈哈。虽然很抽象,但至少能帮助大家一眼能看懂ControlNet是干什么事情的。
没错,ControlNet的灵魂就是“控制”,我给他起了一个漂亮的解释,叫做“带着枷锁跳舞”。
官方解释是:ControlNet 是一种神经网络结构,通过添加额外条件来控制扩散模型。也就是实现对细节的精确控制。
了解了这个之后,我们就可以开始今天的主题了,本篇文章目录:
-
ControlNet模型介绍
-
ControlNet各个模型的差异
-
ControlNet预处理器介绍与安装
-
预处理器安装报错问题处理
-
ControlNet基础工作流搭建与案例分享
-
总结
1.ControlNet模型介绍
1.1 模型介绍
Controlnet截至目前一共发布了14种模型,有些模型的功能是大体类似的,所以我按照自己的理解,又把他们分成了5类,分别是:
-
景深控制模型:ControlNet 1.1 Depth、ControlNet 1.1 Normal
-
线条控制模型:ControlNet 1.1 Canny、ControlNet 1.1 MLSD、ControlNet 1.1 Scribble、ControlNet 1.1 Soft Edge、ControlNet 1.1 Lineart、ControlNet 1.1 Anime Lineart、
-
姿态控制模型:ControlNet 1.1 Openpose
-
色彩控制模型:ControlNet 1.1 Shuffle、ControlNet 1.1 Segmentation
-
特殊模型:ControlNet 1.1 Instruct Pix2Pix、ControlNet 1.1 Inpaint、ControlNet 1.1 Tile、
可以发现,模型最多的还是前三类,景深控制、线条控制和姿态控制。
1.2 模型下载与安装
那知道了模型,我们怎么安装呢?这里给大家分享下官方地址:
controlnet 1.5 版本模型下载
controlnet 1.5 版本模型下载页面
ControlNet SDXL 版本模型下载
controlnet SD版本模型下载页面
这里大家要注意,controlnet的版本要和底模的版本保持一致,不然就会报错,可能出现以下情况,看绿色箭头处大家就明白了。
接着我们就要安装了,这个也比较简单,安装路径看下图,这里建议大家把 “.pth” 和 “.yaml” 都下载放进去,然后刷新或者重启下comfyui就可以了。
安装之后,在comfyUI界面双击鼠标左键输入“apply controlNet”,就可以调出该节点了,怎么使用我会在最后的案例中进行说明。
1.3 模型版本命名规则
大家应该也发现了,作为设计师,每次看到一长串看不懂的英文和汉字,就不知所云,这个我当时也郁闷了好久,为什么一个模型的命名要这么长。。。
后来,我发现原作者已经做了详细的解释,这里我也帮助大家整理理解下:
我们最需要关注的是“e/p/u”模型完成度,和“基于sd1.5版本进行训练”两个数值,一个决定了模型的稳定程度,一个决定了模型的版本,这里建议大家优先尝试“P,已完成模型”。
下面这张是原版:
2.ControlNet各个模型的差异
接下来就是ControlNet的各个模型的介绍了,其实在官方网站中已经说的很详细了,我这里就结合案例帮助大家更好地理解下各个模型的差异。
第一类是景深控制模型:ControlNet 1.1 Depth、ControlNet 1.1 Normal
这两个模型是能够基于图片的立体纵深效果生成类似的画面。
第二类是线条控制模型:ControlNet 1.1 Canny、ControlNet 1.1 MLSD、ControlNet 1.1 Scribble、ControlNet 1.1 Soft Edge、ControlNet 1.1 Lineart、ControlNet 1.1 Anime Lineart。
这6个模型是能够基于线稿生成类似的画面,区别在于线稿的类型不一样,有的是直线,有的是曲线,还有的是涂鸦线,这就类似于每个人不一样的起稿方式。
第三类是姿态控制模型ControlNet 1.1 Openpose
这个模型可以基于人物的内部框架,身体姿势生成类似的画面。
第四类是色彩控制模型
ControlNet 1.1 Shuffle、ControlNet 1.1 Segmentation
这类模型是能够在原来的颜色上进行再创作,非常有意思。
第五类是特殊模型:ControlNet 1.1 Instruct Pix2Pix、ControlNet 1.1 Tile、ControlNet 1.1 Inpaint、
这三种模型分别是“指令模型”,比如第一张图,只要输入“make hand on fire”,就可以让手上出现火焰效果;第二个是“分块高清处理模型”,可以把一张模糊的图片变高清;最后一个是“局部重新绘制”模型,顾名思义,可以在蒙版区域进行局部内容替换。
这是ControlNet 1.1 Inpaint局部替换的效果。
ok,到这里就把ControlNet的14个模型介绍完了,大家有不清楚的可以访问下面的官方进行更详细的了解,其实这里面虽然模型很多,但是理解之后还是比较容易记住的,并且常用的模型大概占了一半,比如canny,MLSD,openpose这些,大家记得主流的模型其实就好了,并且希望大家在自己的模型上多试试,这样能加深理解,我这里因为精力有限,也不跟大家再细致地聊每一个模型,我会在后续文章中根据具体的用到的工作流再跟大家详细介绍,望大家谅解。
ControlNet模型官方解释
好啦,我们进入下一话题!
3.ControlNet预处理器介绍与安装
3.1 ControlNet预处理器介绍
说完了ControlNet模型,接下来要跟大家分享下ControlNet预处理器是咋么一回事,我看了很多教程,一开始都不是很明白这个预处理器和模型之间到底是什么关系,但随着不断地探索,我终于明白了其中的奥秘,用一句话来表达:
Controlnet的核心理解在于他的模型出图 需要先适配 他的风格,才能出图,如果你上传的图片本身是已经预处理过的了,那么就不需要ControlNet预处理器了。
简而言之,就是预处理器要先把图片处理成ControlNet模型能理解的样子,比如下面的canny模型,他能理解的就是线稿,如果我们本地上传的就是一张线稿,那就不需要预处理器了,如果我们本地上传的是一张彩色图片,那就必须先通过相关的预处理器先处理成线稿,再“喂”给ControlNet模型。
我给大家举个例子,看下面这个案例,里面的面包的线稿是我从本地处理好上传的,这时候,就能生成类似线稿形状的面包。
但是如果我本地没有这张线稿,怎么办呢?
那也没关系,这个时候,ControlNet预处理器就派上用场了,他就是为这个而生的。我先让预处理器把本地的面包照片在comfyui中处理成线稿,再喂给ControlNet模型,就可以了。
这里大家要注意一点,就是预处理器和模型之间最好是对应关系,虽然不对应也能出图,但是有可能达不到我们想要的效果。
上面这个虽然没对应上,但是“scribble”模型也跟线条还有些关系,如果我们换成“openpose”模型,结果就真的是一点不像线稿图了。所以还是建议大家细心些,对对好。
3.2 ControlNet预处理器的安装
我们还需要安装下预处理器,这个安装教程跟之前一样,我这里推荐两种安装办法,一种是在官方网站下载进行本地安装,一种是在comfyui界面直接安装。
1.官方下载压缩包进行本地安装:
ControlNet预处理器官方网站
下载之后放到指定目录即可
2.在Comfyui界面直接安装
在管理器manager中,搜索“fannovel16”找到下面的节点,点击安装,然后重启软件即可。
3.3 ControlNet预处理器和模型的对应关系
在了解了预处理器的基本概念之后,我们还有一个问题需要解决,就是预处理器中有那么多的选项,我到底应该选择哪一个呢?我又应该怎么和controlNet模型对应上呢?
首先我们先解决第一个问题:同一个类型中应该选哪个?
比如“法向与深度”预处理器中有13个,我该怎么选择,这里我建议大家亲自去尝试,每一个处理器都试一下,看一下结果,时间长了,自然就清楚了,本人也是基本上把所有的预处理器都是试了一遍,如下图:
这里我就拿一个深度预处理器给大家看下不同的效果,大家可以发现,其实都相差不大,大家在遇到真正需求的时候,还是都尝试一下,就能理解了。
下面的线稿预处理器也是一样的,如果大家非要整清楚各个之间的细微差别的话,可以去站酷上搜索类似的文章,有些博主已经写的很详细啦,我这里就抛个砖,引个玉,哈哈。
当然,我也会在后续分享的工作流实战中,遇到哪个处理器,到时候再根据具体场景进行解析。
然后,我们解决第二个问题:怎么和controlNet模型对应上呢?
这里有两个方法,我也推荐给大家,第一个方法是去看官方文档,文档里写地非常详细,大家在使用的时候对照下就好了。
预处理器和模型的对应关系
第二个办法就是看目录,仔细看下ControlNet预处理器的一级目录,大概也能猜到对应哪个ControlNet模型。
4.ControlNet预处理器安装报错问题处理
之所以把这单独拿出一个目录来讲,是我发现安装报错好像时有发生,所以我这里就想着帮助大家怎么解决运行预处理器的问题。
虽然我们通过上面的方式把预处理器装上了,但是在运行的时候,比如下面的“openpose姿态预处理器”时。
如果没有安装对应的模型,这时会出现下面的报错;
这个时候我们要做的就是把终端出现的那个模型,自己独立下载后放到指定的目录就好啦,比如上方的缺失模型是“body_pose_model.pth”,上网下载装到前面显示的目录就行。
访问刚刚的网址,拉到最底部,就有全部的预处理器资源文件啦(建议英文对照)
这里告诉大家一个小技巧,就是原作者已经在下载的文件上告诉我们的安装路径了,下面红框内的就是路径
5.ControlNet基础工作流搭建与案例分享
最后,跟大家分享下最基础的ControlNet工作流,熟悉了这个之后,后面都是在这个基础上做延展的,第一个给大家分享的是在背景不变的情况下,改变人物性别,姿势也没有变化。
这里用到的是ControlNet 1.1 Depth模型和“MiDaS深度预处理器”,然后通过固定两个采样器的种子来实现的,需要工作流参考的可以联系我哦。
第二个给大家分享的是上传一只鸟,然后通过“AnimalPose动物姿态预处理器”识别小鸟的肢体结构,和“openpose模型”,然后通过蒙版进行局部的调整,效果也是不错滴,需要工作流参考的可以联系我哦。
6.总结
好啦,今天的分享到这里就结束了,本篇文章我通过很长的篇幅帮助大家了解ControlNet各个模型的差异点,和跟ControlNet预处理器的相互辅助关系,其实SD做的就是控制,控制结构、姿态、外型等,这些都离不开ControlNet模型,所以大家如果对这一块感兴趣,可以仔细看下。
如何学习Stable Diffusion ?
2023年,AIGC绘画元年,从年初以来,以Midjourney和Stable Diffusion 为代表的AIGC绘画迎来春天,掀起了一场生产力革命。
Stable diffuson最大的优势在于它的可控性以及免费开源。很多人想学习和使用stable diffusion,网上一搜,往往在安装这一步就劝退了很多人。
也因为Stable diffusion中的参数非常非常多,极其容易劝退,但事实是,对于我们来说,只需要熟练使用即可,并不需要深入的去研究它的原理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的StableDiffusion学习资料包括:StableDiffusion学习思维导图、StableDiffusion必备模型,精品AI学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天)Stable Diffusion初始入门
该阶段让大家对StableDiffusion有一个最前沿的认识,规避碎片化学习,对SD的理解将超过 95% 的人。可以在相关讨论发表高级、不跟风、又接地气的见解,成为AI艺术创作领域的佼佼者。
-
1.Stable Diffusion的起源及工作原理
-
2.Midjourney跟Stable Diffusion之间的的区分指南
-
3.Stable Diffusion一键包快速实现部署
-
4.Stable Diffusion启动器参数
-
5.Stable Diffusion的“Settings”页面高效配置Al模型
-
6.Stable Diffusion的插件安装指南
-
7.汉化Stable Diffusion界面实操
-
8.Stable Diffusion中的大模型使用指南
-
9.Stable Diffusion VAE模型
-
10.txt2img文本提示转换成图像实操
-
11.生成(Generate)功能相关的系列按钮
-
12.单批跟总批的配比选择指南
-
13.采样方法
-
14.生成图像的引导迭代步数
-
…
第二阶段(30天)Stable Diffusion进阶应用
该阶段我们正式进入StableDiffusion进阶实战学习,学会构造私有知识库,扩展不同的艺术风格。快速根据甲方的要求改动高效出图。掌握智能绘图最强的AI软件,抓住最新的技术进展,适合所有需出图行业。真·生产力大爆发!!!
-
1.涂鸦Sketch功能
-
2.涂重绘鸦Inpainting Sketch功能
-
3.局部重绘Inpainting功能详解
-
4.上传蒙版Inpainting upload功能
-
5.segment anything辅助抠图功能
-
6.inpaint anything蒙版获取功能
-
7.ControlNet的起源及工作原理
-
8.ControlNet插件扩展功能
-
9.ControlNet基础界面使用指南
-
10.ControlNet五种线稿模型
-
11…ControlNet重绘修复模型
-
12.ControlNet 图像提示迁移模型实战
-
…
第三阶段(30天)专属Lora模型训练
恭喜你,如果学到这里,所有设计类岗位你将拥有优先选择权,自己也能训练Lora 了!通过对模型进行微调有效减少模型的参数量和计算量,以生成特定的人物、物品或画风,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
-
1.定制个人的LORA模型适配个性化需求
-
2.高质量素材过程中的重要事项收集指南
-
3.birme工具批量化的处理图片实战
-
4.BooruDatasetTagManager工具打标图片实战
-
5.正则化训练集使用指南
-
6.SD-tainerLORA训练工具
-
7.SD-tainer工具训练自己的Lora操作
-
8.LORA模型测试指南
-
…
第四阶段(20天):商业闭环
对氛围性场景,关键词技巧,图生图实操流程等方面有一定的认知,教你「精准控制」所有图片细节,可以在云端和本地等多种环境下部署StableDiffusion,找到适合自己的项目/创业方向,做一名被 AI 武装的社会主义接班人。
-
1.CodeFomer模型实战
-
2.固定同一人物形象IP实战
-
3.广告设计
-
4.电商海报设计
-
5.制作3D质感
-
6.室内设计全案例流程
-
7.AI赋能电商新视觉
-
8.老照片修复
-
9.小说推文
-
10.影视游戏制作
-
11.游戏开发设计
-
12.三维软件去精准辅助SD出高质量图实战
-
13.GFPGAN模型实战
-
…
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名AI绘图大神的正确特征了。