径向基神经网络代码(pytorch)

具体内容:径向基网络函数(最小二乘法)python实现)_class rbfnetwork:-CSDN博客

pytorch代码实现:

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torch.optim as optim
import time
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
import numpy as np

start = time.perf_counter()
class RBF(nn.Module):
    def __init__(self,centers_dim,out_dim,centers,sigma):
        super(RBF,self).__init__()
        self.flatten = nn.Flatten()#变成二维的
        self.centers_dim=centers_dim
        self.out_dim=out_dim
        self.centers = nn.Parameter(centers)
        self.sigma = nn.Parameter(sigma)
        self.linear = nn.Linear(self.centers_dim, self.out_dim)

    def forward(self,X):
        x= self.flatten(X)
        distance = torch.cdist(x, self.centers)
        gauss = torch.exp(-distance ** 2 / (2 * self.sigma ** 2))
        y=self.linear(gauss)
        return y
#数据运行
iris = load_iris()
X = iris.data  # 获取特征值
y = iris.target  # 获取特征值
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=10)
X_tensor = torch.tensor(X_train, dtype=torch.float32)  # 明确指定 dtype 以避免潜在的自动转换问题
y_tensor = torch.tensor(y_train, dtype=torch.long)  # 类别标签应使用整数类
X_test = torch.tensor(X_test, dtype=torch.float32)  # 明确指定 dtype 以避免潜在的自动转换问题
y_test = torch.tensor(y_test, dtype=torch.long)
centers_dim=10
input_dim=X_tensor.shape[1]
out_dim=3
#聚类产生聚类中心等
def P_centers(X_tensor,centers_dim):
    kmeans = KMeans(n_clusters=centers_dim)
    kmeans.fit(X_tensor)  # 找到一组适当的中心点
    centers = kmeans.cluster_centers_  # 用kmeans找中心点位
    centers=torch.tensor(centers,dtype=torch.float32)
    # 计算标准差
    distances = torch.cdist(X_tensor,centers)
    sigma = torch.std(distances, axis=0)  # 计算了所有聚类中心的距离标准差的平均值
    return centers,sigma
centers,sigma=P_centers(X_tensor,centers_dim)

rbf= RBF(centers_dim,out_dim,centers,sigma)
optimizer = optim.Adam(rbf.parameters(),lr=0.001)
loss_fun = nn.CrossEntropyLoss()#分类模型
start = time.time()
epochs = 10000
Loss=[]
for epoch in range(epochs):
    Y_pre = rbf(X_tensor)
    loss = loss_fun(Y_pre,y_tensor)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    print("epoch:{}\t  loss:{:>.9}".format(epoch+1,loss.item()))
    Loss.append(loss.item())
end = time.time()
print("time:",end-start)
plt.plot(Loss)
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.show()

from sklearn.metrics import precision_score, recall_score, accuracy_score
def evaluation( y_test, y_predict):
    precision = precision_score(y_test, y_predict, average='macro')
    accuracy = accuracy_score(y_test, y_predict)
    recall = recall_score(y_test, y_predict, average='macro')
    print("accuracy:", accuracy)
    print(" precision:", precision)
    print(" recall:", recall)


#训练效果
print("!!!训练集!!!")
Y_pre= torch.max(Y_pre, 1)[1]
pred_y = Y_pre.data.numpy()
target_y = y_tensor.data.numpy()
# 衡量训练集准确率
evaluation(pred_y ,target_y)


#预测效果
print("!!!测试集!!!")
y_pre = rbf(X_test)
y_pre= torch.max(y_pre, 1)[1]
pred_y = y_pre.data.numpy()
target_y = y_test.data.numpy()
# 衡量测试集准确率
evaluation(pred_y ,target_y)

数据来源:Iris - UCI 机器学习存储库

运行结果:

Python 中的径向函数 (Radial Basis Function, RBF) 神经网络是一种径向函数作为激活函数的神经网络模型。这种类型的网络主要用于解决函数逼近和分类问题,特别适合处理高维数据。 RBF 神经网络的工作原理: 1. **输入映射**:每个输入特征被映射到一个高维空间,通常是通过核函数(如径向函数)实现。 2. **中心点和权重**:网络包含多个中心点或节点,每个节点对应一个高维空间中的点。节点的权重决定了该点对输出的影响。 3. **激活函数**:RBF 神经元使用径向函数作为激活函数,其值取决于输入样本与中心点之间的距离。 4. **解码过程**:网络通过加权和这些RBF函数的输出,以及一个偏置项,计算出最终的输出结果。 **Python 实现**: - 在 scikit-learn 库中有一个 RBF 复制器模型 (`sklearn.neural_network.MLPRegressor` 或 `sklearn.neural_network.MLPClassifier` 的 `activation` 参数可以设置为 `'rbf'`,用于创建 RBF 神经网络。 - 如果想要更底层的控制,可以使用其他深度学习库如 Keras 或 PyTorch,它们也提供了构建 RBF 神经网络的功能,通过自定义层或者使用预定义的函数。 **相关问题--:** 1. 如何在 scikit-learn 中创建 RBF 神经网络? 2. RBF 神经网络相比于其他类型的神经网络有何优势? 3. 使用 RBF 神经网络时如何选择合适的中心点和高斯函数参数?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值