海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。表达式为:
S
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
c
)
S=\sqrt{p(p-a)(p-b)(p-c)}
S=p(p−a)(p−b)(p−c)其中
p
=
a
+
b
+
c
2
p=\frac{a+b+c}{2}
p=2a+b+c
它的特点是形式漂亮,便于记忆。
相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以被称为海伦公式。中国秦九韶也得出了类似的公式,称三斜求积术。
如图,对于任意一个三角形,有
① h 2 = a 2 − x 2 ② ( c − x ) 2 + h 2 = b 2 h^{2}=a^{2}-x^{2} ② (c-x)^{2}+h^{2}=b^{2} h2=a2−x2②(c−x)2+h2=b2
将①带入②得:
(
c
−
x
)
2
+
a
2
−
x
2
=
b
2
(c-x)^{2}+a^{2}-x^{2}=b^{2}
(c−x)2+a2−x2=b2
c
2
−
2
c
x
+
a
2
=
b
2
c^{2}-2cx+a^{2}=b^{2}
c2−2cx+a2=b2
x
=
c
2
+
a
2
−
b
2
2
c
x=\frac{c^{2}+a^{2}-b^{2}}{2c}
x=2cc2+a2−b2代入①得:
h
=
a
2
−
(
c
2
+
a
2
−
b
2
2
c
)
2
h=\sqrt{a^{2}-(\frac{c^{2}+a^{2}-b^{2}}{2c})^{2}}
h=a2−(2cc2+a2−b2)2
则
S
=
1
2
c
a
2
−
(
c
2
+
a
2
−
b
2
2
c
)
2
S=\frac{1}{2}c\sqrt{a^{2}-(\frac{c^{2}+a^{2}-b^{2}}{2c})^{2}}
S=21ca2−(2cc2+a2−b2)2
S
=
c
2
4
a
2
−
(
c
2
+
a
2
−
b
2
2
c
)
2
S=\sqrt{\frac{c^{2}}{4}}\sqrt{a^{2}-(\frac{c^{2}+a^{2}-b^{2}}{2c})^{2}}
S=4c2a2−(2cc2+a2−b2)2
S
=
c
2
a
2
4
−
c
2
4
×
(
c
2
+
a
2
−
b
2
)
2
4
c
2
S=\sqrt{\frac{c^{2}a^{2}}{4}-\frac{c^{2}}{4}\times\frac{(c^{2}+a^{2}-b^{2})^{2}}{4c^{2}}}
S=4c2a2−4c2×4c2(c2+a2−b2)2
S
=
c
2
a
2
4
−
(
c
2
+
a
2
−
b
2
)
2
4
2
S=\sqrt{\frac{c^{2}a^{2}}{4}-\frac{(c^{2}+a^{2}-b^{2})^{2}}{4^{2}}}
S=4c2a2−42(c2+a2−b2)2
S
=
(
c
a
2
+
c
2
+
a
2
−
b
2
4
)
(
c
a
2
−
c
2
+
a
2
−
b
2
4
)
S=\sqrt{(\frac{ca}{2}+\frac{c^{2}+a^{2}-b^{2}}{4})(\frac{ca}{2}-\frac{c^{2}+a^{2}-b^{2}}{4})}
S=(2ca+4c2+a2−b2)(2ca−4c2+a2−b2)(平方差)
S
=
(
2
c
a
+
c
2
+
a
2
−
b
2
4
)
(
2
c
a
−
(
c
2
+
a
2
−
b
2
)
4
)
S=\sqrt{(\frac{2ca+c^{2}+a^{2}-b^{2}}{4})(\frac{2ca-(c^{2}+a^{2}-b^{2})}{4})}
S=(42ca+c2+a2−b2)(42ca−(c2+a2−b2))
S
=
(
(
c
+
a
)
2
−
b
2
4
)
(
b
2
−
(
c
−
a
)
2
4
)
S=\sqrt{(\frac{(c+a)^{2}-b^{2}}{4})(\frac{b^{2}-(c-a)^{2}}{4})}
S=(4(c+a)2−b2)(4b2−(c−a)2)
S
=
(
(
c
+
a
+
b
)
(
c
+
a
−
b
)
4
)
(
(
b
+
c
−
a
)
(
b
−
c
+
a
)
4
)
S=\sqrt{(\frac{(c+a+b)(c+a-b)}{4})(\frac{(b+c-a)(b-c+a)}{4})}
S=(4(c+a+b)(c+a−b))(4(b+c−a)(b−c+a))
S
=
(
c
+
a
+
b
2
)
(
c
+
a
−
b
2
)
(
b
+
c
−
a
2
)
(
b
−
c
+
a
2
)
S=\sqrt{(\frac{c+a+b}{2})(\frac{c+a-b}{2})(\frac{b+c-a}{2})(\frac{b-c+a}{2})}
S=(2c+a+b)(2c+a−b)(2b+c−a)(2b−c+a)
S
=
(
a
+
b
+
c
2
)
(
a
+
b
+
c
2
−
b
)
(
a
+
b
+
c
2
−
a
)
(
a
+
b
+
c
2
−
c
)
S=\sqrt{(\frac{a+b+c}{2})(\frac{a+b+c}{2}-b)(\frac{a+b+c}{2}-a)(\frac{a+b+c}{2}-c)}
S=(2a+b+c)(2a+b+c−b)(2a+b+c−a)(2a+b+c−c)
这就完成了我们的证明,这个证明本身没有任何的思考难度,不过最后算面积的过程可以用来训练我们的计算能力(如果你是初一生啊什么的,需要训练公式运用)