P1002 [NOIP2002 普及组] 过河卒
题目描述
棋盘上 �A 点有一个过河卒,需要走到目标 �B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 �C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,�A 点 (0,0)(0,0)、�B 点 (�,�)(n,m),同样马的位置坐标是需要给出的。
现在要求你计算出卒从 �A 点能够到达 �B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 �B 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
输入输出样例
输入 #1复制
6 6 3 3
输出 #1复制
6
说明/提示
对于 100%100% 的数据,1≤�,�≤201≤n,m≤20,0≤0≤ 马的坐标 ≤20≤20。
【题目来源】
NOIP 2002 普及组第四题
上题解:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int fx[] = {0, -2, -1, 1, 2, 2, 1, -1, -2};
const int fy[] = {0, 1, 2, 2, 1, -1, -2, -2, -1};
//马可以走到的位置
int bx, by, mx, my;
ll f[40][40];
bool s[40][40]; //判断这个点有没有马拦住
int main(){
scanf("%d%d%d%d", &bx, &by, &mx, &my);
bx += 2; by += 2; mx += 2; my += 2;
//坐标+2以防越界
f[2][1] = 1;//初始化
s[mx][my] = 1;//标记马的位置
for(int i = 1; i <= 8; i++) s[mx + fx[i]][my + fy[i]] = 1;
for(int i = 2; i <= bx; i++){
for(int j = 2; j <= by; j++){
if(s[i][j]) continue; // 如果被马拦住就直接跳过
f[i][j] = f[i - 1][j] + f[i][j - 1];
//状态转移方程
}
}
printf("%lld\n", f[bx][by]);
return 0;
}
点个赞,当我粉丝。