Python 遗传算法求Ackley函数最优解

文章介绍了Ackley函数,一种用于测试优化算法的数学函数,以及如何利用Python的geneticalgorithm库进行遗传算法实现。作者通过编写代码示例展示如何定义Ackley函数,调用库进行优化,并呈现了运行结果。虽然运行时间较长,但能获得精确的优化解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

        最近在死磕遗传算法, 自己也写了几个demo做练习,但是苦于不知道自己的算法是否准确,于是找到了一个现成的python库,可以用来调用封装好了的遗传算法,库名就叫做geneticalgorithm,直接

pip install geneticalgorithm

就可以安装成功。

一、Ackley是什么?

        Ackley函数是一个用于测试优化算法的数学函数,由David Ackley在1987年提出。该函数通常被用作优化算法的测试函数,以评估算法的性能和收敛速度。Ackley函数具有多个局部极小值,因此对于优化算法来说是一个具有挑战性的测试函数。

二、使用步骤

        解释几个关键参数。function:自然表示的是,我们要求的函数;dimension:表示函数中的变量值个数,这里由于是X,Y两个坐标值作为变量,那么自然是等于2;variable_type:变量的类型,这里的“real”代表是实数;variable_boundaries:变量的取值区间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伊江痕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值