Python 第二代非支配排序遗传算法(NSGA-II)求解多目标高次函数的帕累托前沿

系列文章目录



前言

        在项目进度管理中,NSGA-II是常用的求解多目标项目进度管理优化问题的算法,虽然NSGA-III也出来了些日子,但是目前主流的研究MORCPSP问题的论文大多采用NSGA-II算法。我认为主要有三个原因:

        第一个是,NSGA-III算法需要更大的计算代价,因为它需要进行额外的种群初始化和排序操作来维护解的分布。这增加了算法的时间复杂度。第二就是,NSGA-III算法需要更多的参数设置,如分治桶的数量和邻域半径等。这些参数的不恰当设置可能会影响算法的性能。最后一点我觉得应该是,NSGA-III算法对目标函数的连续性和可微性有更高的要求。如果目标函数不满足这些条件,NSGA-III算法可能无法找到全局最优解。

        所以,在多目标资源受限问题上,NSGA-II算法仍然是一种更为通用和高效的解决方案,因为它具有更快的速度、更少的参数和对目标函数的较低要求。而我们在求解MORCPSP问题的时候,往往最追求的就是效率问题,即在短时间内求得问题的最优解(或近似最优解)。

        为了能吃透NSGA-II算法,为求解MORCPSP问题打基础,我这里先用NSGA-II求解一个常规的多目标高次函数的帕累托前沿。


一、模型的建立

        研究的模型为:min(y1=x^{2},x\in[0,10]), min(y2=(2-x)^{2},x\in[0,10])。 即求解两个目标函数最小值的问题。

二、算法的步骤

        1 设置参数,定义种群大小、进化代数、交叉概率、变异概率等

        2 定义一个自变量的类,这个类的属性值包括自变量x的值、目标函数值、非支配排序列表、拥挤度距离。

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伊江痕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值