app脱壳

一、概念

由于为了防⽌代码泄露等问题,以及篡改等问题,特意对APP进⾏加固加壳

例如:

未加固:

就如之前的抓包也能直接找到对应的数据
在这里插入图片描述

加固:

一般不能直接找到对应的数据,由于加固的原因要对其先进行脱壳

在这里插入图片描述

二、frida-dexdump脱壳
tool:

frida-dexdump:

https://github.com/hluwa/frida-dexdump
pip install frida-dexdump
use:
frida-dexdump

在这里插入图片描述

使⽤起来跟我们的frida⽤法是⼀样的,⾸先启动⼿机端的frida服务,然后直接使⽤frida-dexdump运⾏-
U -f <包名>即可。

随后将脱后的dex文件进行修复

三、LSP框架脱壳
tools:
FunDex2:https://github.com/Xposed-Modules-Repo/com.zhenxi.fundex2/releases
MT管理器:
⾯具:
ROOT权限:
LSP框架:https://mrzzoxo.lanzoue.com/i74DE1l482xa
use:

将FunDex和LSP安装后面具可能会对lsp进行报错如下:

在这里插入图片描述

只需在设置中打开即可:

在这里插入图片描述

随后进行重启,在任务栏中显示以下信息即表示成功:

在这里插入图片描述

点击即可打开应用:

在这里插入图片描述

随后点击模块,点击启用以及勾选你想脱壳的app:

在这里插入图片描述

随后返回主页进行点击fundex apk,然后再点击想要脱壳的app:
在这里插入图片描述

内容概要:本文详细介绍了OCR(光学字符识别)技术,从定义出发,阐述了它是如何让计算机“看懂”图片里的文字,通过扫描仪等设备读取文本图像并转换成计算机可编辑的文本。文中列举了OCR在办公、图书馆、交通、金融等领域的广泛应用实例,如快速处理纸质文件、车牌识别、银行支票处理等。接着回顾了OCR的发展历程,从20世纪初的萌芽到如今基于深度学习的智能化时代,期间经历了从简单字符识别到复杂场景下的高精度识别的演变。技术层面,深入解析了OCR的关键技术环节,包括图像预处理、文本检测、文本识别和后处理,每个环节都采用了先进的算法和技术手段以确保识别的准确性。最后探讨了OCR在未来可能面临的挑战,如复杂场景下的识别准确率、特殊字体和语言的支持以及数据安全问题,并展望了其与人工智能融合后的广阔前景。 适合人群:对OCR技术感兴趣的技术爱好者、开发者以及希望了解该技术在各行业应用的专业人士。 使用场景及目标:①帮助用户理解OCR技术的基本原理和发展历程;②展示OCR在多个行业中的具体应用场景,如办公自动化、金融票据处理、医疗病历管理等;③探讨OCR技术面临的挑战及未来发展方向,为相关从业者提供参考。 其他说明:本文不仅涵盖了OCR技术的基础知识,还深入探讨了其背后的技术细节和发展趋势,对于想要深入了解OCR技术及其应用的人来说是非常有价值的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值