pwr | 谁说样本量计算是个老大难问题!?(二)(独立样本均值篇)

本文介绍了如何基于R的pwr包来计算两组之间血红蛋白A1c(HbA1c)均值变化的样本量。通过设定研究假设、效果大小(Cohen’sd)和权力水平,计算出每组需要6个受试者。文章还探讨了样本量与功效的关系以及如何根据效果大小调整样本量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1写在前面

上次介绍了两组发生率样本量计算方法,通过pwr包进行计算非常简单,可以有效地减少我们的工作量。😘
有时候我们想比较两组之间的均值,如何计算样本量又一次成了老大难问题。🤒
本期我们还是基于pwr包,试一下通过两组的均值进行样本量的估算。😏

2用到的包

rm(list = ls())
library(pwr)
library(tidyverse)

3研究假设

还是假设我们正在进行一项RCT研究,旨在评估Treatment ATreatment B之间血红蛋白A1c (HbA1c)相对于基线平均变化的差异。🤪

我们先提出研究假设, :👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值