【统计模型】缺失数据处理方法

目录

一、缺失数据定义

二、缺失数据原因

三、缺失数据处理步骤

四、数据缺失机制

1.完全随机缺失(MCAR)

2.随机缺失(MAR)

 3.非随机、不可忽略缺失(NMAR)

五、缺失数据处理方法

1.直接删除

2.缺失值插补

3.单一插补

(1)介绍

(2)均值插补

(3)随机插补法

(4)回归插补法

(5)随机回归插补

4.多重插补方法(R语言mice包可做)

(1)介绍

​(2)优点

六、缺失数据处理实例——R语言VIM包中的sleep数据集


一、缺失数据定义

        在实际工作中,常会因为某些原因导致数据缺失,只能观测到一部分数据,统计学中一般称为缺失数据。

二、缺失数据原因

  • 调查对象忘记回答问题
  • 调查对象拒绝回答敏感问题
  • 调查对象错过约定时间或过早退出调查
  • 获取这些信息的代价太大
  • 记录设备出现问题或数据误记

三、缺失数据处理步骤

  1. 识别缺失数据
  2. 检查导致数据缺失的原因
  3. 删除包含缺失值的案例或用合理的数值插补缺失值

四、数据缺失机制

1.完全随机缺失(MCAR)

        数据的缺失完全是随机的,数据缺失与否与其它任何完全观测或含缺失数据变量都无关,此时可以将数据完整的样本看作是所有数据集的一个简单随机样本。

P(Y Missing|X,Y)=P(Y Missing)

2.随机缺失(MAR)

        数据的缺失不是完全随机的,某变量数据缺失与否与其他完全观测变量相关,但与它自己的未观测值无关。

P(Y Missing|X,Y)=P(Y Missing|X)

 3.非随机、不可忽略缺失(NMAR)

        数据不完全变量中数据缺失的概率依赖于数据不全变量的数值本身,这种缺失机制是不可忽略缺失。

【注】第三种缺失机制不易处理和建模,因而通常假设缺失数据前两种缺失机制。

五、缺失数据处理方法

1.直接删除

        也就是将存在缺失数据的对象(元组、记录)删除,从而得到一个完整的数据信息表。

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值