see
前缀和数组和差分数组就相当于是一个逆过程
对于一个数组a[ ],前缀和数组s[ ] 中的第 i 个数为其前 i 个数的和
而差分数组b[ ] 中的第 i 个数为前缀和数组s[ ] 中的第 i 个数减去第 i - 1 个数
公式:
s[i] = b[i] + b[i-1] //通过差分求前缀和
b[i] = s[i] - s[i-1] //通过前缀和求差分
进行题解的具体步骤就是先根据原数组求出前缀和数组
然后根据前缀和数组求出差分数组,对差分数组进行相关操作后再求前缀和
1. 前缀和(一维)
输入一个长度为 n 的整数序列。
接下来再输入 m 个询问,每个询问输入一对 l,r。
对于每个询问,输出原序列中从第 l 个数到第 r 个数的和。
输入格式
第一行包含两个整数 n 和 m。
第二行包含 n 个整数,表示整数数列。
接下来 m 行,每行包含两个整数 l 和 r,表示一个询问的区间范围。
输出格式
共 m 行,每行输出一个询问的结果。
数据范围
1 ≤ l ≤ r ≤ n,
1 ≤ n,m ≤ 100000,
−1000 ≤ 数列中元素的值 ≤ 1000
思路就是维护一个数组来存储前 i 个数的和
#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int a[N], sum[N];
int main() {
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
//对前缀和数组进行初始化
for (int i = 1; i <= n; i++) {
sum[i] = sum[i - 1] + a[i];
}
while (m--) {
int l, r;
cin >> l >> r;
cout << sum[r] - sum[l - 1] << endl;
}
return 0;
}
2. 子矩阵的和(二维)
输入一个 n 行 m 列的整数矩阵,再输入 q 个询问,每个询问包含四个整数 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入格式
第一行包含三个整数 n,m,q。
接下来 n 行,每行包含 m 个整数,表示整数矩阵。
接下来 q 行,每行包含四个整数 x1,y1,x2,y2,表示一组询问。
输出格式
共 q 行,每行输出一个询问的结果。
数据范围
1 ≤ n,m ≤ 1000,
1 ≤ q ≤ 200000,
1 ≤ x1 ≤ x2 ≤ n,
1≤ y1 ≤ y2 ≤ m,
−1000 ≤ 矩阵内元素的值 ≤ 1000
关于二维的思路与一维差不多,所维护的求和数组位某点左上角的矩形所包含的所有数的和
求中央一个矩阵的和时,用该矩阵的四个点进行计算即可
!!!留意二维的初始化和求结果的公式
#include<iostream>
using namespace std;
int a[1010][1010], s[1010][1010];
int main() {
int n, m, q;
cin >> n >> m >> q;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> a[i][j];
}
}
//初始化求和数组
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
s[i][j] = s[i][j - 1] + s[i - 1][j] - s[i - 1][j - 1] + a[i][j];
}
}
while (q--) {
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
cout << s[x2][y2] - s[x2][y1 - 1] - s[x1 - 1][y2] + s[x1 - 1][y1 - 1] << endl;
}
return 0;
}
3. 差分(一维)
输入一个长度为 n 的整数序列。
接下来输入 m 个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r] 之间的每个数加上 c。
请你输出进行完所有操作后的序列。
输入格式
第一行包含两个整数 n 和 m。
第二行包含 n 个整数,表示整数序列。
接下来 m 行,每行包含三个整数 l,r,c,表示一个操作。
输出格式
共一行,包含 n 个整数,表示最终序列。
数据范围
1 ≤ n,m ≤ 100000,
1 ≤ l ≤ r ≤ n,
−1000 ≤ c ≤ 1000,
−1000 ≤ 整数序列中元素的值 ≤ 1000
大佬讲题见:传送门
#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int a[N], b[N]; //a为原数组,b为要求的差分数组
int main() {
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> a[i];
b[i] = a[i] - a[i - 1]; //差分数组公式
}
while (m--) {
int l, r, c;
cin >> l >> r >> c;
//对差分数组进行操作
b[l] += c; //在差分数组中对某个点的数据进行操作,由于所对应的前缀和是求的前i个,所以会影响后面的所有数据
b[r + 1] -= c;
}
for (int i = 1; i <= n; i++) {
a[i] = b[i] + a[i - 1];
cout << a[i] << ' ';
}
return 0;
}
4. 差分矩阵(二维)
输入一个 n 行 m 列的整数矩阵,再输入 q 个操作,每个操作包含五个整数 x1,y1,x2,y2,c,其中 (x1,y1) 和 (x2,y2) 表示一个子矩阵的左上角坐标和右下角坐标。
每个操作都要将选中的子矩阵中的每个元素的值加上 c。
请你将进行完所有操作后的矩阵输出。
输入格式
第一行包含整数 n,m,q。
接下来 n 行,每行包含 m 个整数,表示整数矩阵。
接下来 q 行,每行包含 5 个整数 x1,y1,x2,y2,c,表示一个操作。
输出格式
共 n 行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。
数据范围
1 ≤ n,m ≤ 1000,
1 ≤ q ≤ 100000,
1 ≤ x1 ≤ x2 ≤ n,
1 ≤ y1 ≤ y2 ≤ m,
−1000 ≤ c ≤ 1000,
−1000 ≤ 矩阵内元素的值 ≤ 1000
大佬讲题见:传送门
#include<iostream>
using namespace std;
const int N = 1010;
int a[N][N], b[N][N];
//对差分数组进行操作
void insert(int x1, int y1, int x2, int y2, int c) {
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
int main() {
int n, m, q;
cin >> n >> m >> q;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cin >> a[i][j];
}
}
//将b[]构建为a[]的差分数组
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
insert(i, j, i, j, a[i][j]);
}
}
//对差分数组进行操作
while (q--) {
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
insert(x1, y1, x2, y2, c);
}
//将差分数组b[]构建为前缀和数组
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
b[i][j] = b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1] + b[i][j];
}
}
//将前缀和数组进行输出
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
cout << b[i][j] << ' ';
}
cout << endl;
}
return 0;
}