tensorflow2.1+Anaconda+python3.7环境搭建

tensorflow学习参考github项目:

Study_TF2.0/tensorflow2.md at master · dxc19951001/Study_TF2.0 · GitHub

GitHub - dxc19951001/Deep-Learning-with-TensorFlow-book: 深度学习入门开源书,基于TensorFlow 2.0案例实战。Open source Deep Learning book, based on TensorFlow 2.0 framework.

参考b站视频:

https://www.bilibili.com/video/BV1Kg4y1Z73F?vd_source=1e42ca0f687a9516a840096feaeaa18e

然后为什么视频和教程里面,这里是为什么要选择tensorflow 2.1这个版本的原因:

我在下面这篇博客中找到了答案,有兴趣的可以看一下:

配置Tensorflow使用CUDA进行GPU加速(超详细教程)_tensorflow cuda-CSDN博客

然后这里讲一下tensorflow这个版本要求是很严格的,并不像pytorch那样子版本兼容性很高

环境搭建遇到的问题:

我是跟着上面b站那个视频安装的,他们跟着安装就行,但是有问题的点我在下面会写:

(1)annaconda环境问题,anaconda安装环境的问题,tensorflow一直找不到2.1的包,无奈之下找了很多方法去搭建但是还是失败,我重新安装了win10虚拟机,我担心之前的win10因为配置多用户acl的问题导致环境问题。

如何下载带有Python3.7的Anaconda3版本_anaconda3.7-CSDN博客

项目首页 - anaconda-version-map - GitCode

在我回溯的时候,发现虽然我的anaconda是3.7版本的,但是跟教程视频的不一样,没办法,我们完全一样试一下,教程上是2019.10那个版本,我们去找到

Index of / (anaconda.com)

前面这些都可以了,但是到安装tensorflow,在python中验证又出发了问题,貌似在安装2.1版本的时候,有些缺失了。我在想是不是换源后的tensorflow包的问题?于是我尝试直接安装,不换源

不换源直接gg,换源路还是gg

TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower). 安装tensorflow==2.1版本显示

protobuf这个库的问题

这里解决方法是:

对于我们前面装好的东西,全部卸载掉,不选择pip安装

选择conda install tensorflow然后就解决问题了。

就是tensorflow不要用pip去安装!

(2)pycharm找不到conda的python.exe问题:

解决的方式也是非常的奇特,参考这篇博客:

pycharm配置anaconda环境时找不到python.exe解决办法_anaconda 环境 tools 没有python.exe-CSDN博客

(3)GPU的问题

按道理来说,你应该是可以在虚拟机上面安装好cudatoolkit和cudnn这些东西的,但是当你测试下面这段代码的时候:

测试代码:

import tensorflou as tf



tensorflow_version=tf.__version__



gpu_available=tf.test.is_gpu_available()



print("tensorflow_version:",tensorflow_version,"gpu_available:",gpu_available)



a=tf.constant([1.0,2.0], name="a")

b=tf.constant([1.0,2.0], name="b")



result=tf.add(a,b,name="add")



print(result)

你得到的gpu_available的值为false,也就是说这个gpu没用上,emmm,具体我在网上试过很多解决方法,但是依旧没有成功,然后有一篇博客是这样子说的:

虚拟机上无法安装tensorflow-GPU版本_ubuntu 虚拟环境安装 tensorflow gpu 安装测试不成功-CSDN博客

我觉得这里实在不行就用Docker,或者直接就在宿主机上搭建就行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值