自动驾驶
文章平均质量分 73
饕子
我是北大信息管理系大数据管理与应用方向学生,我对人工智能、计算机视觉、计算机图形学、文本挖掘、搜索引擎、机器学习(深度学习)、计算神经科学、知识图谱、NLP等方向感兴趣。
展开
-
自动驾驶在线建图:Panoptic SegFormer
自动驾驶技术的发展离不开精确而实时的环境感知和地图建立。在这方面,自动驾驶在线建图技术起到了至关重要的作用。本文将介绍一种名为Panoptic SegFormer的在线建图方法,通过查找相关资料并回答问题的方式,详细探讨该方法的原理、应用以及对自动驾驶技术的意义。原创 2023-07-12 11:42:07 · 442 阅读 · 0 评论 -
自动驾驶中的多目标跟踪:MOTR/MUTR3D
MOTR是一种综合运用计算机视觉和深度学习技术的多目标跟踪方法。它通过从传感器(如摄像头)获取的连续图像序列中,检测、识别和跟踪多个目标,以实现对目标的准确定位和运动状态估计。MUTR3D是一种基于3D激光雷达数据的多目标跟踪方法。相比于使用图像数据进行跟踪,MUTR3D通过使用激光雷达扫描点云数据,可以提供更加准确和稳定的目标位置和运动状态信息。原创 2023-07-12 11:39:56 · 1089 阅读 · 0 评论 -
智能座舱5.0人机主动式交互
座舱5.0人机主动式交互是将人工智能技术应用于车辆座舱系统,实现与驾驶员之间的智能化交互。通过感知驾驶员的行为和需求,座舱系统可以主动地提供相关信息并作出相应的响应。这种交互方式不仅能够提高驾驶员的驾驶安全性和舒适度,还能够提升整个驾驶过程的智能化和人性化。原创 2023-07-12 11:27:44 · 260 阅读 · 0 评论 -
自动驾驶:像素-代理互动
像素-代理互动是指通过对输入图像像素进行处理,从而直接与自动驾驶代理进行交互的过程。它通过对输入图像进行语义分割、实例分割、目标检测等处理,提取出有意义的像素级别信息,并传递给自动驾驶代理进行决策。这种方法不仅考虑了整体图像的特征,还能够更准确地获取细粒度的信息,从而提高自动驾驶系统的感知和决策能力。原创 2023-07-12 11:04:02 · 71 阅读 · 0 评论 -
自动驾驶:基础模型
自动驾驶技术是当下备受关注的领域之一,它将改变未来交通系统和出行方式。在实现完全自主驾驶之前,我们需要建立一系列基础模型来支持和推动这一技术的发展。本文将介绍一些关于自动驾驶基础模型的相关知识。原创 2023-07-12 10:43:46 · 401 阅读 · 0 评论 -
自动驾驶:基于自车query的轨迹规划
轨迹规划是指在已知环境信息和自车状态的基础上,通过算法生成车辆行驶路径的过程。其主要作用是确保车辆在遵守交通规则的前提下,安全而高效地行驶。轨迹规划需要考虑到道路结构、交通状况、车辆动力学模型等因素,以生成最佳的行驶路径。原创 2023-07-12 10:38:48 · 218 阅读 · 0 评论 -
自动驾驶:联接规划模块友好
自动驾驶技术的发展离不开各个模块之间的协同工作,其中联接规划模块的友好性尤为重要。本文将介绍联接规划模块在自动驾驶系统中的作用,探讨如何提高其友好性,以及友好性对于自动驾驶技术的意义。原创 2023-07-12 07:45:29 · 50 阅读 · 0 评论 -
自动驾驶:实例级预测
实例级预测是自动驾驶领域中一项重要的技术,通过对周围环境中的各种交通参与者(例如行人、车辆等)进行个体级别的预测,帮助自动驾驶系统更准确地理解和预测道路上的行为。本文将介绍实例级预测的概念、原理和应用,并探讨其在自动驾驶技术中的重要性和挑战。原创 2023-07-12 07:41:44 · 101 阅读 · 0 评论 -
自动驾驶:短时序全场景BEV
短时序全场景BEV(Bird’s Eye View)是自动驾驶领域中一种重要的感知和决策辅助技术。它通过将车辆周围环境以俯视图的形式展示,提供全方位、全景式的环境感知能力,为自动驾驶系统提供更精确的信息。本文将介绍短时序全场景BEV的概念、原理和应用,并探讨其在自动驾驶技术中的重要性和挑战。原创 2023-07-12 07:40:04 · 203 阅读 · 0 评论 -
自动驾驶:实例级地图预测
实例级地图预测是指通过对环境进行感知和建模,预测出道路、交通状况和行人行为等信息。它是自动驾驶技术中的重要环节,能够提供给自动驾驶系统有关道路和周围环境的精确信息,从而帮助车辆做出更加准确的决策和规划。原创 2023-07-12 07:36:36 · 80 阅读 · 0 评论 -
自动驾驶端到端网络中的Vanilla Solution和Explicit Design
端到端网络是指将输入直接映射到输出的神经网络模型。在自动驾驶领域,端到端网络直接从传感器数据(如图像或激光雷达数据)中学习驾驶决策。这种方法的优点在于能够从原始数据中自动学习特征和决策,无需手工设计复杂的规则和流程。自动驾驶端到端网络中的Vanilla Solution和Explicit Design是两种常见的方法。Vanilla Solution通过端到端的神经网络实现整个驾驶任务,虽然简单直接,但可能存在解释性和鲁棒性的挑战。原创 2023-07-12 06:51:04 · 247 阅读 · 0 评论 -
自动驾驶多任务框架中的 Backbone
在自动驾驶领域中,多任务学习是实现高性能自动驾驶系统的重要手段之一。而 backbone 作为多任务框架的核心组件,则承担着特征提取和共享的关键角色。通过设计强大、可迁移和高效的 backbone 框架,我们可以构建出更加出色的自动驾驶系统。原创 2023-07-12 06:40:54 · 367 阅读 · 0 评论 -
自动驾驶系统框架设计:多任务框架
自动驾驶技术是一种基于人工智能和传感器技术的前沿领域,旨在实现车辆无人驾驶。自动驾驶系统需要利用大量的传感器数据进行感知、决策和控制等任务,因此需要一个高效且可扩展的系统框架来支持多任务的处理。原创 2023-07-12 06:25:13 · 209 阅读 · 0 评论 -
自动驾驶:利用大模型知识蒸馏进行感知优化
大模型知识蒸馏是一种将复杂的大型神经网络模型中的知识传递到小型模型中的技术。在自动驾驶中,通常使用大型模型来处理感知和决策任务,但在实际应用中,这些大型模型往往会带来计算和存储资源的限制。因此,利用大模型知识蒸馏可以将这些大型模型的知识转移到小型模型中,从而在保持性能的同时减少计算资源的消耗。训练大型模型:使用大规模的训练数据和复杂的神经网络结构,训练一个高性能的大型模型。这个模型可以具有更准确的感知和决策能力。原创 2023-07-11 21:50:56 · 266 阅读 · 0 评论 -
自动驾驶:利用大模型进行仿真优化
自动驾驶技术的快速发展为我们带来了更加安全和便捷的交通方式。然而,在实际应用中,我们必须面对许多挑战,如复杂的环境、多样化的交通规则和对于异常情况的处理等。为了解决这些问题,利用大模型进行仿真优化成为了一种有效的方法。本文将介绍自动驾驶中利用大模型进行仿真优化的重要性和具体应用。原创 2023-07-11 21:43:05 · 268 阅读 · 0 评论 -
自动驾驶中的大模型优化数据标注
通过对图像、视频和传感器数据进行标注,将现实世界的场景与相应的语义信息关联起来,从而使自动驾驶系统能够学习和理解环境中不同元素的特征和行为规律。准确的数据标注可以提高自动驾驶系统的性能和鲁棒性。通过半监督学习、主动学习和弱监督学习等技术的结合,可以提高数据标注的效率和准确性,进一步推动自动驾驶技术的发展。在自动驾驶中,可以利用少量的手动标注数据和大量的未标注数据来训练深度学习模型,从而提高数据标注的效率。在自动驾驶中,由于标注数据的成本和难度较高,可以利用弱监督学习方法来训练模型,从而降低标注数据的要求。原创 2023-07-11 21:40:52 · 468 阅读 · 0 评论 -
SOTA(State-of-the-art):科技领域的最新成果
SOTA是指目前在特定领域或任务中被广泛认可的最优秀方法或技术。它反映了该领域的最高水平,对于推动科技研究和发展至关重要。通过了解和追踪SOTA,我们可以了解到最新的科技成果和创新。SOTA代表着科技领域的最新成果,对于科技研究和发展具有重要的意义。通过了解SOTA的定义、追踪最新成果以及应用SOTA方法,我们可以不断学习和应用最前沿的技术和方法,为科技创新和发展做出贡献。鼓励读者跟随SOTA的进展,不断更新知识,并在自己的研究和实践中运用SOTA方法。原创 2023-07-11 21:36:04 · 944 阅读 · 0 评论 -
nuScenes数据集:城市自动驾驶研究的宝库
nuScenes数据集是一个用于自动驾驶研究的大型数据集,旨在提供丰富多样的真实城市场景。该数据集覆盖了多个城市,包括波士顿和新加坡等,涵盖了不同的道路类型和交通情况。nuScenes数据集是一个宝贵的资源,为城市自动驾驶研究提供了丰富多样的真实场景数据。通过利用这个数据集,研究人员可以开展各种有关自动驾驶领域的研究,推动技术的进步和应用。随着数据集的不断更新和发展,我们可以期待更多有关城市自动驾驶的重要成果涌现。原创 2023-07-11 21:32:57 · 492 阅读 · 0 评论 -
自动驾驶:原始设备制造商(OEM)的角色和影响
在讨论自动驾驶技术时,原始设备制造商(OEM)是一个重要的概念。OEM是指制造和销售汽车并提供相应服务的公司,通常是大型汽车制造商或汽车集团公司。OEM在汽车行业中扮演着关键的角色,不仅负责设计和生产汽车,还负责提供售后服务和维修保养等。原始设备制造商(OEM)是指生产和销售产品的公司,这些产品通常被其他公司用于自己品牌的产品中。在汽车行业中,OEM是指制造和销售汽车的公司,他们提供独立品牌的汽车给全球消费者。他们不仅设计和制造汽车,还提供相关的售后服务和支持。原创 2023-07-10 08:39:34 · 381 阅读 · 0 评论 -
自动驾驶:安全驾驶决策系统(SDS)的重要性
随着自动驾驶技术的发展,为了确保自动驾驶车辆能够在道路上安全行驶,需要引入一套可靠的安全驾驶决策系统(SDS)。SDS通过对周围环境的感知和实时数据处理,实现对安全驾驶行为的决策和控制。SDS的定义:SDS是一种基于感知、判断和决策等功能的系统,用于实现自动驾驶车辆的安全驾驶。SDS的原理:SDS利用传感器技术(如激光雷达、摄像头、超声波等)获取周围环境信息,通过感知算法对数据进行处理和分析,进而对道路、其他车辆和行人等进行实时识别和跟踪。原创 2023-07-10 08:37:24 · 606 阅读 · 0 评论 -
自动驾驶:责任敏感安全(RSS)驾驶标准
随着自动驾驶技术的发展,为确保行驶过程中的安全性和合规性,需要建立一套严格的驾驶标准。RSS作为一种驾驶标准,旨在确保自动驾驶车辆在道路上行驶时始终具备责任感、注重安全,并能够适应复杂的交通环境。RSS的定义:RSS是一种基于责任感的驾驶标准,要求自动驾驶车辆在行驶过程中遵守交通法规、考虑其他道路用户,并始终保持安全距离和速度。RSS的原则:安全性原则:自动驾驶车辆应始终行驶在安全速度,与其他车辆和行人保持安全距离,并遵守交通法规。原创 2023-07-10 08:31:49 · 530 阅读 · 0 评论 -
自动驾驶:道路经验数据管理(REM)
随着自动驾驶技术的发展,道路经验数据管理(REM)成为了自动驾驶系统中的重要组成部分。REM利用车辆感知的道路信息,包括地标、交通标志、交通流量等,通过数据采集、处理和更新,为自动驾驶系统提供实时、准确的道路情报。REM的定义:REM是一种集中收集、管理和更新车辆行驶过程中所获取的道路经验数据的技术。这些数据包括道路标志、交通流量、行驶速度等信息。REM的作用:REM可以提供实时、准确的道路情报,帮助自动驾驶系统更好地感知和理解道路环境。原创 2023-07-10 08:30:00 · 310 阅读 · 0 评论 -
自动驾驶:标定-地图-定位
自动驾驶技术的发展使车辆能够在无人驾驶的情况下行驶。为了实现精准的自动驾驶,标定、地图和定位成为关键技术。标定是调整传感器和控制器之间的参数和配置,使得传感器能准确感知环境。地图提供道路和交通信息,帮助车辆感知环境。定位确定车辆在地图中的准确位置和姿态。原创 2023-07-10 08:28:27 · 331 阅读 · 0 评论 -
自动驾驶:Zoox标定-地图-定位
Zoox是一家专注于无人驾驶技术研究和开发的公司,其目标是打造全自动驾驶出行解决方案。作为一家领先的自动驾驶技术公司,Zoox在标定、地图和定位等关键技术领域取得了重要突破。原创 2023-07-10 08:15:25 · 101 阅读 · 0 评论 -
自动驾驶:地理配准
地理配准在自动驾驶中扮演着重要的角色,它能够帮助车辆实现精确定位、路径规划和决策等功能。常用的地理配准方法包括激光点云配准、视觉配准、GPS/IMU配准和特征匹配等。通过合理使用地理配准方法,可以提高自动驾驶系统的性能和可靠性。自动驾驶技术的快速发展已经使得无人驾驶成为可能,这种技术不仅需依赖传感器和算法来感知和理解环境,还需要对车辆位置进行准确的估计和定位。本文将介绍地理配准的作用、常用方法以及其在自动驾驶中的重要性。准确的地理配准可以帮助无人驾驶系统在现实世界中准确定位,实现精细化的路径规划和决策。原创 2023-07-10 08:10:49 · 324 阅读 · 0 评论 -
自动驾驶:数据投影
自动驾驶技术的发展正日益受到广泛关注,它利用先进的感知、决策和控制系统使汽车能够在没有人类干预的情况下实现自主驾驶。然而,要实现真正的自主驾驶,需要解决复杂的问题,其中之一就是数据处理和投影。本文将介绍数据投影在自动驾驶中的重要性、常用的数据投影方法以及其应用场景。原创 2023-07-10 08:09:45 · 91 阅读 · 0 评论 -
自动驾驶:DDPG系统
自动驾驶技术是当今汽车行业的热点领域之一,它利用先进的感知、决策和控制系统使汽车能够在没有人类干预的情况下实现自主驾驶。其中,深度确定性策略梯度(DDPG)是一种被广泛应用于自动驾驶系统中的强化学习算法。本文将介绍DDPG算法的基本原理、优缺点以及在自动驾驶领域的应用。原创 2023-07-10 08:08:35 · 484 阅读 · 0 评论 -
自动驾驶:V2X通信
V2X通信是指车辆与周围一切事物之间的无线通信,包括车辆与车辆(V2V)、车辆与道路基础设施(V2I)、车辆与行人(V2P)以及车辆与网络(V2N)之间的通信。通过V2X通信技术,车辆可以共享自身感知、位置、速度和意图等信息,实现更智能、更安全的交通系统。V2X通信的定义是为了实现车辆与周围实体之间的信息交流和协同行动,通过传输和接收关键数据,提供实时决策支持。V2X通信的目标是提高交通系统的安全性、效率和环境友好性,减少交通事故和拥堵,改善驾驶体验。原创 2023-07-09 23:37:06 · 714 阅读 · 0 评论 -
自动驾驶:V2X通信
V2X通信是指车辆与周围一切事物之间的无线通信,包括车辆与车辆(V2V)、车辆与道路基础设施(V2I)、车辆与行人(V2P)以及车辆与网络(V2N)之间的通信。通过V2X通信技术,车辆可以共享自身感知、位置、速度和意图等信息,实现更智能、更安全的交通系统。V2X通信的定义是为了实现车辆与周围实体之间的信息交流和协同行动,通过传输和接收关键数据,提供实时决策支持。V2X通信的目标是提高交通系统的安全性、效率和环境友好性,减少交通事故和拥堵,改善驾驶体验。原创 2023-07-09 22:15:36 · 197 阅读 · 0 评论 -
自动驾驶:TopCon 系统
TopCon系统是一种高级的自动驾驶系统,该系统利用先进的传感器技术和算法,实现车辆的自主导航和路径规划。与传统的自动驾驶系统相比,TopCon系统更加智能、稳定和安全。TopCon系统的定义是为实现自动驾驶车辆的精确定位和环境感知,通过集成多种传感器数据,并利用深度学习和机器学习等先进算法进行数据处理和决策。TopCon系统的目标是提供高精度的自主导航、智能避障和高效路径规划功能,以实现更安全和便捷的自动驾驶体验。原创 2023-07-09 22:14:23 · 95 阅读 · 0 评论 -
自动驾驶:SLAM研究
同时定位与地图创建(SLAM)是一种在未知环境中,通过使用传感器数据进行定位并生成地图的技术。在自动驾驶领域,SLAM被广泛应用于实现车辆的自主导航和路径规划。SLAM的定义是通过使用传感器数据,同时实现对车辆位置的估计和环境地图的创建。SLAM的目标是实现车辆在未知环境中的精确定位,并生成准确的地图,以便自动驾驶系统可以更好地感知和规划路径。原创 2023-07-09 21:31:38 · 738 阅读 · 0 评论 -
自动驾驶:局部动态地图(Local Dynamic Map,简称LDM)
局部动态地图(LDM)是一种专为自动驾驶车辆设计的地图,用于描述车辆周围的道路环境和交通状况。LDM主要用于感知和决策模块,帮助车辆做出准确的路径规划和交通决策。道路和车道几何信息:包括道路形状、车道宽度等。交通标志和信号灯信息:包括限速标志、转弯提示、红绿灯状态等。车辆和行人信息:包括周围车辆和行人的位置、速度等。LDM的目标是提供准确、实时的道路和交通信息,以帮助自动驾驶车辆做出智能的决策和规划。原创 2023-07-09 21:30:12 · 1629 阅读 · 0 评论 -
自动驾驶:导航数据标准(NDS)
导航数据标准(NDS)是一种开放式标准,旨在为自动驾驶车辆提供精确、一致和可靠的导航数据。NDS定义了地图数据的存储格式、内容和交换方式,以实现自动驾驶车辆对道路信息的准确理解和导航决策的优化。原创 2023-07-09 21:28:35 · 1489 阅读 · 0 评论 -
自动驾驶:MANA感知模块
MANA(Multi-modal Artificial Neural Architecture)是一种基于多模态人工神经网络的感知模块。它结合了传感器数据的多种模态(如图像、雷达、激光雷达等),通过深度学习算法实现对车辆周围环境的理解和识别。原创 2023-07-09 17:00:02 · 158 阅读 · 0 评论 -
自动驾驶:BEV感知框架
BEV感知框架是一种基于鸟瞰图的感知方法。它将车辆周围的环境建模为一个二维平面,从而简化了感知任务。BEV感知框架通过将车辆周围的点云数据映射到一个鸟瞰图上,实现对车辆周围环境的理解和识别。原创 2023-07-09 16:57:28 · 1245 阅读 · 0 评论 -
自动驾驶:纯视觉NeRF三维重建
纯视觉NeRF三维重建是一种利用神经网络模型进行三维场景重建的方法。它通过学习从不同角度观察到的图像到场景中每个点的辐射强度的映射关系,从而实现对三维场景的准确重建。与传统的基于激光雷达或摄像头融合的方法相比,纯视觉NeRF三维重建方法无需额外传感器,只需使用普通摄像头即可实现高精度的三维重建。原创 2023-07-09 16:56:05 · 1545 阅读 · 0 评论 -
自动驾驶:条件性模仿学习(CIL)
CIL是一种监督学习方法,旨在让车辆通过学习人类驾驶者的行为来完成自动驾驶任务。它的核心思想是将人类驾驶者的操作行为作为训练数据,通过模型学习到驾驶决策的规律,从而实现自主导航。原创 2023-07-09 12:29:44 · 455 阅读 · 0 评论 -
自动驾驶:通过强化学习实现端到端驾驶
自动驾驶是指汽车在无人操作的情况下,通过使用各种传感器和算法来感知环境,并做出相应的决策和控制操作的技术。传统的自动驾驶方法通常将感知、决策和控制划分为不同的模块进行处理,这些模块之间需要进行信息传递和协调。然而,近年来兴起的基于强化学习的端到端(End-to-End)驾驶方法提供了一种全新的解决方案。原创 2023-07-09 12:28:32 · 902 阅读 · 0 评论 -
自动驾驶:通过模仿学习实现的端到端驾驶
端到端驾驶是指将整个自动驾驶系统作为一个整体,直接从输入(例如摄像头和传感器数据)到输出(例如方向盘转角和油门刹车控制)进行映射,省略了中间的模块化处理。这意味着系统可以直接从原始数据中学习驾驶策略,无需依赖预定义的规则或特征提取。自动驾驶技术的发展离不开端到端驾驶的探索和创新。通过模仿学习实现的端到端驾驶方法为自动驾驶系统的训练提供了一种简洁高效的方式。然而,我们仍然需要进一步研究和探索,以解决端到端驾驶面临的挑战,并推动自动驾驶技术更加安全、可靠和普及化。原创 2023-07-09 12:27:06 · 930 阅读 · 0 评论 -
自动驾驶:ALVINN 1988 – 最早的端到端自动驾驶模型
自动驾驶技术是当今科技领域最炙手可热的话题之一。在这个领域中,ALVINN(Autonomous Land Vehicle In a Neural Network)是一个里程碑式的项目,它开创了自动驾驶技术的先河。下面我们将深入探讨ALVINN模型。原创 2023-07-09 12:25:27 · 613 阅读 · 0 评论