GPLinker学习笔记

GPLinker学习笔记

前言

GPLinker是一种基于图神经网络和注意力机制的方法,用于预测蛋白质-受体相互作用。本篇博客将从GPLinker的原理、实现和应用等方面进行详细的讲解。

原理

GPLinker的核心思想是将蛋白质-受体相互作用预测问题转化成一个图表示学习问题,然后使用基于图神经网络和注意力机制的模型进行求解。具体地,首先将蛋白质和受体的氨基酸序列转化为图形表示,其中每个氨基酸对应一个节点,节点之间的边表示两个氨基酸之间的物理或化学特性。然后,结合训练数据,使用图神经网络模型对图进行表示学习,并利用注意力机制来自适应地聚焦于重要的特征。最终,通过将预测结果与实际结果进行比较,计算误差并反向传播进行模型参数更新。其数学描述和推导公式如下:

假设有 n n n个氨基酸, m m m个结构域,输入的图数据可以表示为一个邻接矩阵 A ∈ R n × n × m A \in R^{n \times n \times m} ARn×n×m和一个特征矩阵 X ∈ R n × f X \in R^{n \times f} XRn×f,其中 f f f是特征数量。此外,每个氨基酸和结构域都有相应的标签向量,分别为 y r 1 ∈ { 0 , 1 } n y_{r_1} \in \{0, 1\}^n yr1{0,1}n y r 2 ∈ { 0 , 1 } m y_{r_2} \in \{0, 1\}^m yr2{0,1}m。假设GPLinker的目标函数为 L L L,则其推导公式如下:

Z = X H t = f ( H t − 1 , A ) G i = h ( H T , y r 1 ) E j = g ( G , y r 2 ) Q = s i g m o i d ( ∑ i = 1 n α i E j ) L = − ∑ i = 1 n [ y r 1 , i log ⁡ ( Q i ) + ( 1 − y r 1 , i ) log ⁡ ( 1 − Q i ) ] Z = X \\ H_t = f(H_{t-1}, A) \\ G_i = h(H_T, y_{r_1}) \\ E_j = g(G, y_{r_2}) \\ Q = sigmoid(\sum_{i=1}^n \alpha_i E_j) \\ L = -\sum_{i=1}^n [y_{r_1,i} \log(Q_i) + (1 - y_{r_1, i}) \log(1 - Q_i)] Z=XHt=f(Ht1,A)Gi=h(HT,yr1)Ej=g(G,yr2)Q=sigmoid(i=1nαiEj)L=i=1n[yr1,ilog(Qi)+(1yr1,i)log(1Qi)]

其中, H H H表示每个时间步的隐藏状态, G G G表示每个氨基酸的表示, E E E表示每个结构域的表示, α \alpha α表示注意力系数, s i g m o i d sigmoid sigmoid是一个激活函数, L L L是目标函数。

实现

GPLinker的实现可以使用PyTorch Geometric库完成。以下是一个使用GPLinker进行蛋白质-受体相互作用预测的例子:

import torch
from torch_geometric.datasets import GPLinkDataset
from torch_geometric.data import DataLoader
from torch_geometric.nn import GCNConv, GINConv
from torch.nn import Linear, Sequential, ReLU

class GPLinker(torch.nn.Module):
    def __init__(self, num_features, num_classes, num_domains):
        super(GPLinker, self).__init__()
        self.conv1 = GCNConv(num_features, 64)
        self.conv2 = GINConv(Sequential(Linear(64, 128), ReLU(),
                                        Linear(128, 64), ReLU()))
        self.conv3 = GCNConv(64, num_classes)
        self.lin1 = Linear(num_classes * num_domains, 128)
        self.lin2 = Linear(128, 1)

    def forward(self, x, edge_index, batch):
        h = self.conv1(x, edge_index)
        h = self.conv2(h, edge_index)
        h = self.conv3(h, edge_index)
        g = torch.cat([torch.max(h[b], dim=0)[0] for b in range(batch[-1]+1)], dim=1)
        e = g.mean(dim=-1, keepdim=True)
        alpha = (e @ g.permute(1, 0)).sigmoid()
        return alpha.view(-1)

dataset = GPLinkDataset(root='/path/to/dataset')
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

model = GPLinker(dataset.num_node_features, dataset.num_classes, dataset.num_domains)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

for data in dataloader:
    optimizer.zero_grad()
    out = model(data.x, data.edge_index, data.batch)
    loss = F.binary_cross_entropy(out, data.y)
    loss.backward()
    optimizer.step()

应用

GPLinker在蛋白质-受体相互作用预测领域具有广泛的应用,可以有效地提高预测性能。此外,GPLinker还可以用于其他图形表示学习问题,如社交网络分析、自然语言处理等方面。

结语

GPLinker是一种基于图神经网络和注意力机制的方法,用于预测蛋白质-受体相互作用。本篇博客对GPLinker的原理、实现和应用进行了简单的讲解,希望能对大家在相关领域的研究和实践有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值