线性代数:正定二次型与正定矩阵学习笔记

线性代数:正定二次型与正定矩阵学习笔记

一、背景

在线性代数中,二次型是一个非常重要的概念。本文主要介绍正定二次型和正定矩阵的定义、性质和应用,并希望能够对读者加深对线性代数的理解和应用有所帮助。

二、定义

1. 二次型

A A A n n n 阶实对称矩阵, x \boldsymbol{x} x n n n 维列向量,则称 Q ( x ) = x T A x Q(\boldsymbol{x})=\boldsymbol{x}^TA\boldsymbol{x} Q(x)=xTAx 为二次型。

2. 正定二次型

∀ x ≠ 0 \forall \boldsymbol{x}\neq \boldsymbol{0} x=0,都有 Q ( x ) > 0 Q(\boldsymbol{x})>0 Q(x)>0,则称 Q ( x ) Q(\boldsymbol{x}) Q(x) 是正定二次型。

3. 正定矩阵

A A A n n n 阶实对称矩阵,若对于任意非零向量 x \boldsymbol{x} x,都有 x T A x > 0 \boldsymbol{x}^TA\boldsymbol{x}>0 xTAx>0,则称 A A A 是正定矩阵。

三、性质

  1. 正定二次型的系数矩阵 A A A 是正定矩阵。
  2. 正定矩阵的特征值均为正数。
  3. 正定矩阵必然是可逆的。

四、判定方法

1. 二次型主轴法

对于二次型 Q ( x ) = x T A x Q(\boldsymbol{x})=\boldsymbol{x}^TA\boldsymbol{x} Q(x)=xTAx,通过正交变换 x = P y \boldsymbol{x}=\boldsymbol{P}\boldsymbol{y} x=Py,将二次型化为新的二次型 Q ′ ( y ) = y T D y Q^\prime(\boldsymbol{y})=\boldsymbol{y}^TD\boldsymbol{y} Q(y)=yTDy,其中 D D D 是对角矩阵,则:

  • D D D 的所有对角线元素都大于 0 0 0 时,二次型 Q ′ ( y ) Q^\prime(\boldsymbol{y}) Q(y) 是正定的。
  • D D D 的所有对角线元素都小于 0 0 0 时,二次型 Q ′ ( y ) Q^\prime(\boldsymbol{y}) Q(y) 是负定的。
  • D D D 的对角线元素有正有负时,则 Q ′ ( y ) Q^\prime(\boldsymbol{y}) Q(y) 不是正定的。

因此,我们可以通过二次型主轴法来判断一个二次型是否是正定的。

2. 特征值法

A A A 是一个 n n n 阶实对称矩阵, λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn A A A n n n 个特征值,则:

  • λ i > 0 ( 1 ≤ i ≤ n ) \lambda_i>0(1\leq i \leq n) λi>0(1in) 时, A A A 是正定矩阵。
  • λ i < 0 ( 1 ≤ i ≤ n ) \lambda_i<0(1\leq i \leq n) λi<0(1in) 时, A A A 是负定矩阵。
  • λ i \lambda_i λi 中有正有负时,则 A A A 不是正定矩阵。

因此,我们也可以通过特征值法来判断一个矩阵是否是正定矩阵。

五、应用

在机器学习中,正定二次型和正定矩阵经常被用来描述一些重要的概念。例如,在支持向量机中,正定二次型被用来定义核函数;在主成分分析中,正定矩阵被用来计算协方差矩阵等。

六、总结

本文介绍了正定二次型和正定矩阵的定义、性质、判定方法和应用,希望对读者在学习线性代数时有所帮助。正定二次型和正定矩阵是线性代数中非常重要的概念,其在机器学习中的应用也非常广泛。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值