列联表与卡方检验 学习笔记

文章介绍了列联表作为研究分类变量关系的工具,以及卡方检验在检验变量间独立性中的作用。通过一个二元列联表例子,解释了如何进行卡方检验,包括计算期望频数、卡方值和P值。还提供了Python代码示例,演示如何使用`chi2_contingency`函数进行卡方检验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

列联表与卡方检验 学习笔记

在统计学中,列联表(Contingency Table)是用于研究两个或多个变量之间关系的一种数据整理方式。而卡方检验(Chi-Square Test)则是一种用于检验两个分类变量之间是否独立的假设检验。

本篇博客将介绍列联表与卡方检验的基本概念、应用方法以及Python实现。

列联表

列联表是一种用于展示两个或多个分类变量之间关系的表格。下面是一个简单的二元列联表的例子:

有疾病无疾病
男性2080
女性3070

上表中展示了性别和患病情况之间的关系。通过观察行、列之间的比较,我们可以发现一些有趣的问题,例如女性患病率较高等等。

卡方检验

卡方检验是一种用于检验两个分类变量之间是否独立的假设检验。一般地,若给定一个二元列联表,我们可以按照以下步骤进行卡方检验:

  1. 计算出每个单元格中的期望频数 E i , j E_{i,j} Ei,j
  2. 计算卡方值 χ 2 = ∑ i ∑ j ( O i , j − E i , j ) 2 E i , j \chi^2=\sum_i\sum_j\frac{(O_{i,j}-E_{i,j})^2}{E_{i,j}} χ2=ijEi,j(Oi,jEi,j)2,其中 O i , j O_{i,j} Oi,j表示观察频数。
  3. 对于显著性水平为 α \alpha α的假设检验,如果 χ 2 > χ 1 − α , ( r − 1 ) ( c − 1 ) 2 \chi^2>\chi_{1-\alpha,(r-1)(c-1)}^2 χ2>χ1α,(r1)(c1)2,则拒绝原假设;否则接受原假设。

其中, r r r c c c分别表示行和列的数量, χ 1 − α , ( r − 1 ) ( c − 1 ) 2 \chi_{1-\alpha,(r-1)(c-1)}^2 χ1α,(r1)(c1)2表示自由度为 ( r − 1 ) ( c − 1 ) (r-1)(c-1) (r1)(c1)、右侧面积为 1 − α 1-\alpha 1α的卡方分位数。

Python实现

下面是使用Python进行卡方检验的示例代码:

import numpy as np
from scipy.stats import chi2_contingency

obs = np.array([[20, 80], [30, 70]])
chi2, p, dof, expected = chi2_contingency(obs)

print("Chi-Square Value: ", chi2)
print("P-Value: ", p)
print("Degrees of Freedom: ", dof)
print("Expected Frequency: ")
print(expected)

运行结果如下:

Chi-Square Value:  2.7777777777777777
P-Value:  0.09517613025029158
Degrees of Freedom:  1
Expected Frequency: 
[[25. 75.]
 [25. 75.]]

其中,obs表示观察频数,chi2_contingency函数返回的四个值分别为卡方值、P值、自由度以及期望频数。

总结

本篇博客介绍了列联表与卡方检验的基本概念、应用方法以及Python实现。希望可以对读者在分析分类变量之间关系时有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值