[算法练习]贪心算法之活动安排

template<class Type>
/**
 * [GreedySelector 活动安排贪心算法]
 * @param n      [活动总数量, 此处默认n>=2]
 * @param start  [开始时间数组]
 * @param finish [结束时间数组]
 * @param mark   [是否被选中标记数组]
 */
void GreedySelector(int n, Type start[], Type finish[], bool mark[]){
	int j = 1; // 最后一个被选中的下标;
	mark[j] = true;
	for(int i=2; i<=n; i++){
		if(start[i]>=finish[j]){
			mark[i] = true;
			j = i;
		}else{
			mark[i] = false;
		}
	}
}
/**[活动安排问题描述]
 * 假设n个活动的集合为 			E = {i| i=1,2,..., n}
 * 开始时间集合 			start = {s1, s2, ..., sn}
 * 结束时间集合 		   finish = {f1, f2, ..., fn}      其中 finish 是非降序列 即 i<j => fi <= fj	
 * 现在要求一个活动安排集合mark, 对于mark中的任意活动i,j,要求 fi<=sj 或者 fj<=si
 * =================================================================================================================================
 * 结论: 在活动安排问题中, 贪心选择算法一定能得到全局最优解
 * =================================================================================================================================
 * 证明步骤:
 * Target 1. 证明总是存在以贪心选择开始的最优活动安排方案;
 * Target 2. 证明对于做出贪心选择后, 原问题等价于"对剩余与贪心选择活动相容的活动进行安排的问题"
 *    		即证明若E是总的活动集合, 那么A是原活动集合E的最优安排,那么A' = A-{1} 是活动 E' = {i∈E| start[i] >= finish[1]} 的最优解
 *=================================================================================================================================
 * 证明如下:
 * 1.[Target 1]
 *   假设 P是活动E的一个最优解, 而P中的第一个活动是k. 
 *   若k为1, 那么此P即为以贪心选择开始的活动安排,即证;
 *   否则, 活动安排P的第一个活动k>1, 现在考虑构造一个活动安排Q=P-{k}+{1},
 *   由于finish[1]<=finish[k](finish列表非降), 又由于P是一个合法的活动安排,因此Q也是一个合法的活动安排,且活动安排数量一致;
 *   因此P是最优解=>Q为最优解 => 活动安排Q是以贪心选择开始的活动安排.
 *
 * 2.[Target 2]
 *   假设P是活动E的一个以贪心选择开始的最优解, 那么现在考虑 E中兼容活动{1}的所有活动的集合活动 E' = {i∈E| start[i] >= finish[1]}
 *   我们有 P' = P-{1} 是 E'的一个活动安排, 我们要证明P'是最优的活动安排:
 *   		假设 Q 是活动E'的一个最优解, 假设它具有比P'更多的活动, 那么将活动{1}加入Q, 那么将得到活动集合E的一个最优解Q+{1}
 *   		则|Q+{1}| = |Q|+1 > |P'|+1 = |P-{1}| + 1 = |P| 因此 对于活动集合E来说 Q+{1} 是比 P 更优的解,矛盾.
 *
 *   综合上述两点可以知道, 对于活动安排问题,贪心算法得到的是全局最优解.
 *=================================================================================================================================
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_72429728

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值