1003 Emergency (dijkstra算法)数组实现

文章描述了一个紧急救援问题,利用Dijkstra算法寻找从当前位置到目标城市的最短路径,并在此过程中计算可能集结的最大救援队伍数量。算法通过计算每个节点间的最短距离和救援队数量,以优化救援效率。
摘要由CSDN通过智能技术生成

As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

Input Specification:

Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (≤500) - the number of cities (and the cities are numbered from 0 to N−1), M - the number of roads, C1​ and C2​ - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c1​, c2​ and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C1​ to C2​.

Output Specification:

For each test case, print in one line two numbers: the number of different shortest paths between C1​ and C2​, and the maximum amount of rescue teams you can possibly gather. All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

Sample Input:

5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1

Sample Output:

2 4

Solution:

思路:运用dijkstra算法,在计算最短路程的同时计算最短路的条数和最多救援队数目

#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
#define rep(i,a,n) for(int i=a;i<=n;i++)
const int N=510;
const int INF=0x3f3f3f3f;
int g[N][N],res[N],dis[N],num[N],road[N];    //节点数较少,用邻接矩阵,res数组记录人数
int n,m,C1,C2;
bool st[N];

int dijkstra(){
    memset(dis,0x3f,sizeof dis);
    dis[C1]=0;
    num[C1]=res[C1];
    road[C1]=1;
    rep(i,0,n-1){
        int k=-1;
        rep(j,0,n-1){
            if(!st[j]&&(k==-1||dis[j]<dis[k]))
                k=j;
        }
        st[k]=1;    //确定最小并标记
        rep(j,0,n-1){
            if(dis[j]>dis[k]+g[k][j]){
                dis[j]=dis[k]+g[k][j];
                road[j]=road[k];        //如果有更小的,条数相等
                num[j]=num[k]+res[j];    //必须更新为最短路径的救援队数
            }
            else if(dis[j]==dis[k]+g[k][j]){//路径最短不更新但救援队数更新
                num[j]=max(num[j],num[k]+res[j]);
                road[j]+=road[k];        //相等情况条数叠加
            }
        }
    }
    if(dis[C2]==INF)    return 0;
    return road[C2];
}
int main()
{
    memset(g,0x3f,sizeof g);
    cin>>n>>m>>C1>>C2;
    rep(i,0,n-1){    cin>>res[i];}
    rep(i,1,m){
        int c1,c2,dist;
        cin>>c1>>c2>>dist;
        g[c1][c2]=dist;
        g[c2][c1]=dist;    //无向边看作两个有向边组成
    }
    int t;
    t=dijkstra();
    cout<<t<<' '<<num[C2]<<'\n';
    return 0;
}

/*dijkstra算法计算的是从起点到各点的距离,不能通过遍历dis数组得相同个数
最短路径数和救援队最多数都可以在求最短路径的算法中一并得出*/
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值