高数错题book

记录遇见的错题

不能断定x和y是否为正数 所以需要加绝对值

不过不用担心,{ln(|x|)}'也等于1/x(记住这个结论)

———————————————————————————————————————————

算极限的时候,不能局部等价无穷小和局部带入, 简单点讲就是精度太低,

就是下面这两种方式都是错的

下面是上述的补充

无穷小阶的运算

一.加法替换的规则:

1.若替换后的x同阶

则必须要求替换后x的系数相加不等于0

比如下面这个 

2.若是替换后x不同阶比如下面这个 

3.lime^{x}可以等于e^{limx}(x代表含未知量的式子,我只想表达极限可以提到幂上边)

二. 这是几个无穷小量的运算公式 m n代表阶数

———————————————————————————————————————————

因为三角函数有如下等诸多变换,所以写三角函数题可以考虑添项减项

和差化积

常看常新


 极限

定积分计算极限

下面黑色字是例题

下面是较复杂一点的情况

变元就相当于\frac{2k-1}{2n}

 由题意得,k是从1开始,直到n;所以k的范围是1到n;这样就可以推出\frac{2k-1}{2n}的范围了

但是注意,只有单纯的\frac{k}{n}的话(上面的情况)积分范围就是0到1,不要用下面的方法算

步长就相当于变元的前一项减后一项。也就是\frac{2(k+1)-1}{2n}-\frac{2k-1}{2n}

补充理解:

下图左右式子相等的原因:

相当于把0到1上函数围成的面积切成n份矩形,那么每一份矩形的底就是\frac{1-0}{n}=\frac{1}{n},长就是对应的函数值

举个例子,针对第k个矩形。当x=\frac{k}{n}时矩形的高就等于f(\frac{k}{n}),底就等于\frac{k-1}{n}-\frac{k}{n}=\frac{1}{n}

续:这样子函数与x轴围城的面积就可以由左式表示,同时右式为定积分,也能表示在0到1上函数的面积,故下式相等

同理,当积分区间是(0,2)时,把面积分为n份,每一份的步长就是\frac{2}{n},第k个矩形的高度就是\frac{2k}{n}

两个东西是等价无穷大,取指数不一定还是等价无穷大

取e会把两个数之间的差距拉大,取ln会把两个数的差距拉小。所以算两个数之间是否存在等价无穷大(小)的时候不能取对(指数)

比如n和n^{2}明显不等价,但是lnn等价于lnn^{2}

遇到不会的题 可以考虑一下统一形式

比如这里就是为了统一在减号后边的项乘了个\frac{1}{n^{2}}

记住:

推导过程

抓大头思想↓

抓大头原理:就是把最高次数的项除下去

注意:\sqrt{x^{2}}=|x|,不注意的话会错,而且必须是乘除形式

 总结:

 而且要注意求极限的两边;他们相等极限才存在

定义题

就是问下面这种问题

 

无界和无穷大的区别 

化简如下面这样的式子

结论:积分下限为0的时候,把积分上限和被积函数等价无穷小,这样一通操作后的函数就是原函数的等价无穷小 


高阶导数及其间断点~拉格朗日中值定理

利用拉格朗日定理(这里以1.50为例子)

n^{\alpha }-(n-1)^{\alpha }={(\xi ^{\alpha })}'*(n-(n-1))

n-1<\xi <n--->\frac{n-1}{n}<\frac{\xi }{n}<\frac{n}{n}(拉格朗日中值定理中\xi的范围)

因为n趋于无穷时n-1/n和n/n都等于1,所以\xi等价于n

最后把\xi=n替换进n^{\alpha }-(n-1)^{\alpha }={(\xi ^{\alpha })}'*(n-(n-1))就可以了

 记住下面这个重要变换

 记住下面这个重要结论

 

-1到0和0到+1之间的函数表达式都是1+x

当x趋于-1的右极限,limf(x)=lim_{x->-1}(1+x)等于0, 由图 趋于-1的左极限时f(x)=0,此时函数左右极限相等 故取x=-1时f(x)存在极限

同理,当x趋于1的左极限时,f(x)等于2

要求连续,就要有x->0时{f}'(x)={f}'(0);但因为是分段函数,所以需要分成从0的两边逼近来分类讨论

(?)

 求高阶导数 可以用

1.图中公式法

2.泰勒

3.求一二阶归纳规律


换元法:

把x-1换成t,这样就可以把变量设置成趋于0

x+2可以直接带入x趋于1,算出等于3


当遇见选择题的时候,可以选择:

1.构造函数法——构造一个符合题目且简单的函数

2.带数运算——把数字带进题目,看符合哪个选项 

这种方法只能排除 不能直接选

a f(x)=x^3符合单调增,但是导函数存在为0的点

b 当x=-x时令g(x)等于f(-x);求导有{g}(x)'=-{f}'(-x)

在原函数发生变化时用一个新函数表示,这样会比较明显 ,不然就会误认为{f}'(-x)<=0(实际应当是-{f}'(-x)<=0)


lim_{x->a}\frac{f(x)-f(a)}{(x-a)^n}可以化成红笔部分的形式;

因为(x-a)^n的n为大于1的整数,所以(x-a)/(x-a)^n趋于无穷

要相乘等于-1,只能是\frac{f(x-f(a)}{x-a}等于0【1】

要判断极值,除了{f}'(x)=0,还需要左右两侧的导函数变号

这就用到保号性 因为原式等于-1,也就是小于0 然后参考蓝字就可以分析出D

 补充;【1】如果是相除为0,说明分母是分子的高阶无穷大


\lim_{x->a}\frac{​{f}'(x)-{f}(a)'}{x-a}实际上是二阶导的公式

一阶导为0,二阶导为负数 该点取得极大值 这是书上公式


判断是否存在高阶导数

这里为了判断拐点是否存在,用到了三阶导数

但是在用三阶导数前,要先判断函数是否存在三阶导

原式可以变化为蓝色部分

因为x可导,而函数存在二阶导,所以一阶导也可导。因为等式右边都可导,故左边也可导。所以函数二阶可导,即存在三阶


确定渐近线要分三种情况讨论:水平,垂直,斜渐近线

有水平渐进线,就没有斜渐近线了

水平渐近线是x趋于无穷时y趋于某个特定的数,这里y趋于无穷,故无水平渐近线

垂直渐近线是x趋于分母为0的点时,函数趋于无穷 这里也无垂直渐近线 

斜渐进线求的步骤就是如下图所示了,结果是y=x+1/e

或者也可以用解法2:

先把原式变成这样,后面那一项当x趋于无穷时x\ln (1+\frac{1}{ex} )趋于1/e

我们需要把原式变成ax+b+o(x)的形式(当x趋于无穷时,o(x)趋于0)

 所以我们再变换成下面这样,就完成了


证明函数的零点问题可用罗尔定理 就是把函数反向求导求得“原函数”

单中值一般构造辅助函数用罗尔定理 双中值用柯西和拉格朗日中值 

逆用罗尔定理

 

中值定理辅助函数

辅助函数使用举例 改写成相减的形式

推广的积分中值定理(\int_{0}^{2}f(t)dt=(2-0){f}'(x) 

中值定理题中出现{f}'(x)+f(x)的形式 ,就考虑构造{e^{x}f(x)}'的辅助函数

这里主要是因为e^{x}求导后还是e^{x},联想到在等式两边同时乘e^{x}

下面的同理


积分

不定积分 

积分的题,一定记住:函数里含参数太复杂,一定要记得考虑换元

\int e^{x}cosdx的值为I,最后算得\int sinxde^{x}=e^{x}*sinx-\int e^{x}cosxdx,把\int e^{x}cosdx的值为1代入等式

有根号换元法典型情况:

根号里是:

1.一次函数

2.一次函数除一次函数(下题,而且要注意换元后并不是单纯的dx=dt)

3.指数函数

4.指数函数除指数函数

若是根号里是二次函数,最好考虑三角代换

如图 参考思路

记住口诀 反对幂三指

在这个口诀中,谁排到后面,那么分部积分的时候就要把谁凑到d后面

三角换元不一定非要拘泥于1-x^{2},也可以尝试下面这种

题:

原式可化为: 

实在想不到可以尝试先把式子的一部分代会d后边 看式子剩下的部分有没有什么关联(就是凑微分)

而且记住下面这是\frac{t^{2}+1}{t^{4}+1}的固定化的化简方法

隐函数的不定积分的类型题,方法只有一个,就是找出y=y(t),x=x(t);然后原式就变成了只含有t的式子

将y=tx(这里的t并不是常数,可看作函数)带入原式(即y^{2}*(x-y)=x^{2}),求出x和t的函数表达式x=\frac{1}{t^{2}*(-t)},同理得出y和t的函数表达式,再把这两个式子代回原式替换x,y

注意:找参数方程时并不一定是y=tx,也可以y+x=t,x=ty;怎么方便怎么来 

注意这个东西积不出来 

 

这里可以通过cosnx在0到2\pi上小于1放缩掉,这杨积分式子就不含有cosnx了,就方便求导了

二重积分 

记住下面这个变tanx的方法

等式上下同时除(cosx)^{^{2}},分子1就会变成\frac{1}{cosx^{2}},\frac{1}{cosx^{2}}dx就等于dtanx

在遇见类似于这种题所给的条件x^{2}+y^{2}-xy=1,因为不好在直角坐标系里画出来,所以可以使用极坐标

 如下,以曲线1为例

曲线1用极坐标表示可表示为r=\sqrt{\frac{1}{1-sin\theta cos\theta }}=\sqrt{\frac{2}{2-sin2\theta }}

因为是第一象限,所以\theta的范围是0到\frac{\pi }{2}

再根据三角函数周期性,发现当\theta处于0到\frac{\pi }{4}时,sin2\theta递增,r(也就是图像到原点的距离)递减

\theta处于\frac{\pi }{4}\frac{\pi }{2}时,sin2\theta单调递减,r(也就是图像到原点的距离)递增

下面含绝对值的不等式

右式的前提是a<=b,要是a>b结论相反

题型:

遇见同名函数加减(比如下面这种),要是中值定理问题可考虑拉格朗日;要是积分问题就考虑二重积分

当然,有可能有的二元函数题用先x后y的次序解题;但在对x积分的时候积的时候积得出,对y积分的时候积不出,就变成了上面这种形式

那么出现上述形式,就要还原成原来的二重积分的样子,然后改变积分的顺序就可以了

看到\int e ^{x}sinxdx也就是三角函数乘指数函数这样的式子,就可以连续两次分部积分

连续分部积分后,得到原函数,再解方程

而且最好第一次把什么放进去,之后也要把同类型的放进去

比如第一次放三角函数,第二次也放三角函数

雅可比换元法

要注意用的是雅可比行列式的绝对值

雅可比变换的

例题1.

例题2.

遇见椭圆,可以用雅可比行列式变换为圆

变限积分求导

要求被积函数中不能含有求导变量

要是有,就要想办法把求导变量弄出去

下面是把求导变量弄出去的办法

1.直接把求导变量x移出去

2.利用区间再现去掉求导变量x,记得使用区间再现时t是自变量

3.利用换元法去掉x(记得换元了积分区间也要变)

错题

 答案

 

解析 

1.根据原先积分的\int_{0}^{x}du\int_{0}^{u}dt 上下限,可以画出图(ux轴)

2.z(x,y)=\int_{0}^{x}(\int_{0}^{u}f(t+y)g(yu)dt)du,把\int_{0}^{u}f(t+y)g(yu)dt看作f(x),用上面式子的式一

3.计算dz/dx,则是先把无关变量g(xy)提出来,再用式二

错题 

答案

解析

1.一般而言,打开绝对值后,要考虑函数变号,所以要考虑积分分段的问题

但因为x-y的范围是-\pi到0,这个范围内sinx一直是负的

根据sinx函数的图像,|sin(x-y)|去掉绝对值后,就相当于是sin(y-x)

1.使用区间再现,清除sin(y-x)里的x

2.因为\int ylnydy积不出来,所以可以把lnsiny放到\intdx里 

3.记住公式:

推出:

错题

 答案

解析 

1.由原式求出r的范围(从小圆到大圆)

2.可以把\theta和r换成x和y,方便理解

然后再用直角坐标交换积分次序就可以了 

错题

答案

解析 

1.只解释坐标轴的变换

这里的I1指的是小圆D1,小圆D1是圆心为(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}),半径为1的圆,要对此圆以原点作极坐标,显然不容易算\theta和r,所以可以把圆心为原点 再建立极坐标系

把在原点的圆看作是以圆心(0,0)为基准,(x-0)=rcos\theta;

就很容易理解以(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})为基准的圆,是(x-\frac{\sqrt{2}}{2})=rcos\theta 

通过乘除添项的方式得出dx^{2}


反常积分

反常积分可以简单的解释为:一个在积分区间上不好算出来的函数

具体体现是在积分区间是无穷函数,或者在积分区间上的某个(些)点取不到

同时,可以把积分区间上取不到的点称为瑕点,比如下面积分的x=0的点就是瑕点

但是注意有一个坑,就是求反常积分,若在积分区间有瑕点的话,就要把积分从瑕点处拆开

 拆开后是这样子。

 从图像上看,似乎\int_{-1}^{A}\frac{1}{x}dx\int_{B}^{1}\frac{1}{x}dx能相互抵消

 但因为A和B趋于0的速度不一定一致,所以\int_{-1}^{1}\frac{1}{x}dx不等于0

这里的同一个极限体系指的是如\lim_{x \to\infty }(x^{2}-x^{2})dx

不同的极限体系指的是\lim_{x \to\infty }x^{2}dx-\lim_{y \to\infty }y^{2}dy,因为x和y趋近于无穷的速度不同,无法比较

记住:

ps:这里第4点要求0<q<1时必须要确保\int_{0}^{1}\frac{1}{x^{q}}dx是反常积分

判断反常积分是否收敛

1.找出瑕点(这里可能是0和1,因为若b<0,当x=1时1-x取不到)

2.当趋近1时,(由于积分范围,只能从左侧趋近),x可等价无穷小为1,lnx可以等价无穷小为1-x

3,记得取收敛范围的时候要在(0,1)内,这样才能确保它是反常积分

伽马函数(超纲) 

 由上图可得:

下面是稍微复杂一点的情况


微分方程

错题

答案

 

解析 

1.这种题一般要两边求导构造微分方程

2.看到这种两个函数自变量不一样(一个是x,一个是-x),用不了什么常系数齐次线性微分方程之类的

要想统一自变量,就要记住三步:

求导 替换 抵消

求导:再导一次,导出二阶

替换:这题里的替换是吧原式用-x替换x

反正记得最后的目的是统一f里的变量

3.因为求了两次导,这里记得要把c1和c2算出来

记住:要先判断是否二阶可导(虽然大概率二阶可导) 

因为{f(x)}'=f(-x)+0,0和f(-x)都可导,故{f(x)}'也可导

因为{y}''+a{y}'=f(x)算不了,所以把自变量y用{y}'代替

这样原式就变成{y}'+a{y}=f(x),就可以用一阶常系数齐次线性微分方程

三重积分

一重积分是一条线在积分区间的叠加积分,所以几何意义是面积

二重积分是一个面在积分区间的叠加积分,所以几何意义是体积 

为什么我要放在这里? 主要是这道题可以体现利用二重积分是面积的方法快速计算(法1)

而且记得ln(x+\sqrt{1+x^{^{2}}})是奇函数,积分区间是对称的可以直接消除

无穷级数

级数收敛,说明b_{n}趋向于0 即\lim_{n\rightarrow \infty }b_{n}=0

由此,还能推出:当n趋于无穷时,b_{n}趋于0

再利用等价无穷小可推出,

b_{n}趋于0时,

\frac{b_{n}^{2}}{2}=1-cosb_{n}

 记得在级数问题中考虑等价无穷小


 判断敛散性

比值判别法做出来的根值判别法一定做的出,但根值判别法做得出的比值判别法不一定做得出

做不出指的是利用根值判别法,算出an一种情况下有多个极限。这显然是不合理的

 众所周知,在根值判别法和比较判别法中,当p=1时方法失效

 因此,当p=1时,就要判断当n趋于无穷时a_{n}是否趋于0.当趋于0时收敛,否则发散

如题,使用根值审敛法,发现最后结果是e^{\lim_{n\rightarrow \infty }\frac{lnn}{n^{2}}},p的结果是0

所以第二行是求a_{n}的极值,发现n趋于无穷时a_{n}趋于1,故原级数发散

 除了通过求极限,单调性也可以找出当n趋于无穷时a_{n}是否趋于0

斯特林公式

已知\sqrt[n]{2},\sqrt[n]{3}.....\sqrt[n]{n}\sqrt[n]{n^{2}}

当n趋于无穷时,都等于0

 因此

当n趋于无穷时,ln(n+2)比2大,比n小。因为ln(n+2)夹在2和n之间,所以根据夹逼法,\sqrt[n]{ln(n+1)}等于1

stolz定理

\sum_{n=1}^{\infty }a_{n}收敛,不代表\sum_{n=1}^{\infty }f(a_{n})收敛 所以这里需要把a_{n}从根号里拿出来才能做

p级数的敛散性

比较判别法的极限形式

 例题

  

结论

 下面是lnn的等价无穷大

而且注意下面等式是错误的,两个东西等价无穷大;取指数不一定是等价无穷大

 对数判别法(超纲)

可以用在比较判别法和根值判别法都失效的情况下

注意结论和比较判别法,对数判别法是相反的

尤其是用在这种形式的级数上有奇效

 例题


求幂级数的和函数

求幂级数的和函数,主要分为三个方法:

1.套用现成公式法(重点)

利用先积后导推到出一些公式

已知\frac{1}{1-x}的展开式是\Sigma _{ n=0}^{\infty}x^{n},令x=-x,就得出了\frac{1}{1+x}的展开式(注意是有-1^{n}

\frac{1}{1-x}积分,就得到了ln(1-x)的展开式,同理也可得ln(1+x)

将其相加,即可得ln(1-x^{2}),相减可得ln(1+x^{2})

令x=x^{2},即可由\frac{1}{1+x}推出\frac{1}{1+x^{2}}的展开式,对其积分即可得arctanx的展开式

对于右下角三个式子

\frac{1}{1-x} = \Sigma _{ n=0}^{\infty}x^{n}等式左右求导,记住求导完后右边应当是n=1而不是n=0。然后再令n+1=n,则\Sigma _{ n=1}=\Sigma _{ n+1=1}=\Sigma _{ n=0}; 即可得到\frac{1}{(1-x)^{2}}的展开式

\frac{2}{(1-x)^{3}}就是对\frac{1}{1-x} = \Sigma _{ n=0}^{\infty}x^{n}求导两次的结果,记得最后也要令n=n+1


在套用的时候要记得公式形式

要注意随时变换n=0和n=1的式子

而且注意这道题。可以把x提出去。因为自变量是n,x可看作常数。相对应的,n就千万不能提出去


当遇到是n^{2}的题

通法是构造下面这个函数

用待定系数法列下面这个式子,求解ABC 

得出A B C后直接用上式右边代替n^{2},带入原式

而且记得这里题目是n=1开始的;公式是n=0开始的,所以需要减去n=0的项

最后因为题目是n^{2}2^{1-n} ,要把2^{1-n}变成x^{n}的形式(最后一步)

主要就是把负一次幂提进2里边,变成\frac{1}{2}


 错题

答案(只针对求和函数)

解析 

1.遇见这种求和函数的题,立马想到构造微分方程

2.题目只给出这样的等式,要注意等式成立的n的范围(题中并未给n>=1,这里是因为不存在an=0的情况)

这里的\sum_{n=0}^{\infty }...=1+...就是因为是n=0,不能用题所给的等式,只能把n=0的项单独提出来

3.题给的已知项可以用来算参数


一个拆数的小妙招

上面的式子因为分子含有n+1,要拆只能拆成\sum_{n=0 }^{\infty}(-1)^{n}*\frac{n}{(2n+1)!}x^{2n+1}+\sum_{n=0 }^{\infty}(-1)^{n}*\frac{1}{(2n+1)!}x^{2n+1}

第一个式子含有n用不了sinx的式子

所以可以先提个1/2出来,把分子变成分母样式,这样再拆分就好拆了

这个拆数的方法在其他类型的题目的分式里也很有用 

2.构造微分方程

求一次导用不了微分方程就多求几次导

再带入展开式(S(0)=1),可以得出常数项C_{1}^{}C_{2}^{}

3.先积后导or先导后积
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值