高数复习啊

武忠祥版(因为凯哥版字太多)

极限

只有整体乘除才能用等价无穷小

记住下面的公式

当x属于(0,pi/2)时,sinx<x<tanx

当x属于(0,正无穷)时,\frac{x}{1+x}<ln(1+x)<x


 要记得在式子中寻找相除等于非零常数的因子,比如下面这个

\lim_{x\rightarrow \infty }\frac{lnx}{ln(x+\sqrt{x^{2}-1})}=1这需要在考场上自己发现出来

基本就是看分式上下未知数的次数相等


记住

x \to0时,

arcsinx-x ~ \frac{1}{6}x^{3} 

x-arctanx~ \frac{1}{3}x^{3}


利用\lim_{n \to \infty }x^{n}\left |x \right |<1,x^{n}=0;

\left |x \right |>1,x^{n}趋于无穷;

\left |x \right |=1,分两种情况讨论;


仅由下面这个式子,也能推出f(0)=0

因为当x趋于0时,x^{2}等于0

因为f(0)除以0等于常数1,所以f(0)也等于0


记住 

注意,f(a^{+})f(b^{-})极限不存在不代表f(x)无界

如sinx在x趋于无穷时极限不存在,但是sinx明显有界

且,由原函数单调推无界是不充分的,如f(x)=\frac{1}{x},对于所有 x≥1,都有 0<f(x)≤1。

注意,f(x)在(a,b)上有界推不出f(a+0),f(b-0)存在

例题:

补充:对于e^{x},若x趋于无穷则e^{x}趋于正无穷,若x趋于负无穷则e^{x}趋于0(重点 


下列的式子:

因为在\frac{sint}{sinx}在t趋于x的条件下等于1,所以用ln(x)~x-1(x趋于1)的公式就可以了


 原函数若为周期函数,则其一,二阶导也为周期函数,且求导后的函数以原来函数的周期为周期

求导改变原函数的奇偶性


多种题型的处理方式

记住:\frac{0}{0}型的解法有3种:

洛必达 泰勒 等价代换

1^{\infty }解法有一种,把原式化成(1+\alpha )^{\beta },原式即等于e^\alpha \ast \beta

\infty -\infty型,需要把无穷因子(指引起整个式子趋于无穷的最大项)提出来

如这里,x^{3}是无穷因子

如果无穷因子在分母,则要通分,化成\frac{0}{0}型​​​​​​(配合下面的高阶+低阶~低阶一起食用)

当n趋于无穷时:

拿到题,先估计,由上面知道x^{\frac{1}{x}}趋于1,1/lnx趋于0,故这是一个0^{0}的题;适合取对数


幂指函数的求导(利用多元复合微分)

意味着写这类含幂指函数的题不一定要取对数了,洛必达也可以

记住 


高阶加低阶等于低阶

化简加号右边的式子的分母

记住x \to 0时,ln(x+\sqrt{1+x^{2}})\sim x(可能是因为当x趋于0时,ln(x+\sqrt{1+x^{2}})趋于x+\sqrt{1+x^{2}}-1,因为x趋于0,所以可能变成x+\sqrt{1}-1)

当x趋于0时,(1+t)^{\frac{1}{t}}趋于e,所以这个积分的次数等于积分变量的次数*(被积函数的次数+1)=2

然后就直接消掉\int_{0}^{x}t(1+t)^{\frac{1}{t}}dt(低加高~低),再对剩下的分母进行等价代换

另外一种常见的应用:

因为x^{3}x^{5}的高阶,所以相加时可以直接把含x^{3}的项写入o(x^{5})


留数法

精髓就是把分母裂项,然后设出来的分子的次数比分母最高次数少1

如分母是x^{2}-x+1,分子就设为Bx+C

最后就是算出待定系数A,B,C

方法1:等式两边同乘原分母(1+x^{3}),得到式子1=A(x^{2}-x+1)+(x+1)(Bx+c)

方法2:令x=-1,算出A,再令x等于几个特殊值,算出B和C


间断点

若f(x)在区间I上处处可导,则其导函数{f}'(x)在区间I上没有第一类间断点和无穷间断点

 找极值和拐点

 

以下函数都是左右极限不一定相等的

4指的是取整函数

 例题


e的次方项的极限

比如该题

不能求e^{lim_{x \to\infty }(x^{2}ln(1+\frac{1}{x}))}

 但是下面一题,可以求e^{\lim_{x \to0^{+} }\frac{lncox\sqrt{x}}{x}}

究其原因,是因为上面的极限是无穷,而下面的极限是常数


数列

数列の极限

递推数列

例题

解1对应方法1,归纳法可以看我在b站收藏的视频

首先由题可知,x1-x0>0;x_{n+1}-x_{n}的等式是由x_{n}=2-\frac{1}{1+x_{n-1}}得到

假设x_{n}-x_{n-1}>0;此时x_{n}是递增数列,且x_{0}=1;则(1+x_{n})(1+x_{n-1})>0

可推出x_{n+1}-x_{n}>0;故假设陈丽

然后令n趋于无穷时x_{n}=a;

既然n趋于无穷,那么x_{n-1}也可以看作x_{n},故x_{n-1}=a

解法3(好处是不需要知道数列xn的单调性):

假设x_{n}收敛于a,再验证假设是否陈力

|x_{n}-a|\leq A|x_{n-1}-a|;又因为A|x_{n-1}-a|\leq A^{2}|x_{n-2}-a|;所以以此类推;

|x_{n}-a|\leq A|x_{n-1}-a|\leq.... A^{n}|x_{1}-a|;因为A要求是小于1的数;故A^{n}趋于0;推出x_{n}-a=0;则x_{n}趋于a

x_{n}和a的表达式均在解法1中可以找到,这样就可以拼凑出|x_{n}-a|的表达式

单调增\neq上无界

再来一题

这题的重点就是找出x_{n}的范围

这样在使用上面的解法3时,方便确定\frac{x_{n-1}+a}{2}的范围 


递推函数法

比如a_{n+1}=\frac{1}{a_{n}};则递推函数等于f(x)=\frac{1}{x}

但是递推函数单调递增\neq原数列单调递增:

        比如a1=\frac{1}{2},a2却等于\frac{1}{4}

但是递推函数单调递增\Rightarrow原数列存在单调性:

        具体对应:a2>a1\Rightarrowan单调递增

                          a2<a1\Rightarrowan单调递减

但是递推函数单调递减推不出原数列存在单调性;只能用其它方法


判断数列极限是否存在

法一:特殊值法

常用的判断这类题型是否有极限的特殊值时(-1)^{n}

(-1)^{n}代入选项中可证伪B,C

观察A是a加上a的倒数的形式,于是最好把特殊值凑成和选项一样的形式,变成e^{-1^{n}}


法二:函数判断法(麻烦) 

视an作x,把复合数列看做f(x),画出图像后直接横着来亿刀,看能不能砍中图像一次以上,如果能,那f(an)收敛就不能推出an收敛,等价的逆否命题就是an发散不能推出f(an)发散

如:下图是x+\frac{1}{x}函数的图像(先求f'(x)再画图会方便点),显然能被一条横线穿两次,故发散​​​​​​


求解数列的极限

一般使用放缩法

下面还有斯特林公式  

 重点记住倒数第2,3行的化简方式

倒3利用了在n趋于无穷时,n+1~n,这样就可以把1去掉方便计算

倒2利用在n趋于无穷时,\frac{n+1}{n+lnn}~1(等式上下同除n),这说明拿到较为复杂的分式时,一定要注意观察分式的那些部分是可以约去的,不要一股脑乘在一起

 顺带一提,考试中不能直接使用斯特林公式,需要写证明过程

 放缩法详见:

备注:\sum_{k=1}^{n}k^{2}=\frac{n(n+1)(2n+1)}{6},这是一条公式


判断数列的极限是否存在最大(小)值

因为极限是一个范围,如f(x)的极限是2不代表f(x)最大只能取到2,只是代表以2为圆心,以任意小的数为半径画圆,都有f(x)的值在圆里

 例题

 推论:M,m指最大(小)值

因为收敛,所以总存在一个数不是大于收敛值就是小于收敛值


不定积分

变上限积分求导公式:

(\int_{a}^{\varphi (x)}f(t)dt)'=f(\varphi (x))\varphi '(x)

不能像这样子把极限拿到积分符号\int里边,因为积分符号也算是个极限,

要解此题,先判断,因为x是0和1之间的数,所以n趋向于无穷的时候x^{n}趋向于0,又因为\sqrt{1+x^{2}}在x=(0,1)上有界,所以最终结果可能是0;

大概判断后,可以用夹逼法;

易知\int_{0}^{1}x^{n}\sqrt{1+x^{2}}dx大于0,所以只要放大,让bn<=0即可

详细如下图,因为x的范围是(0,1),所以\sqrt{1+x^{2}}\leq \sqrt{2}


倒代换

记得区分

和 
补充一个:

倒代换重点在于定积分的积分与被积变量无关,故被积变量t能换成x  

因为相等,所以\frac{dx}{1+x^{4}}+\frac{x^{2}}{1+x^{4}}等于两倍的\frac{dx}{1+x^{4}}(这里和区间再现有点相似)

再用之前宇哥版本的笔记提到过的\frac{x^{2}+1}{1+x^{4}}dx的固定凑微分方法就可以继续往下写了

必须要求积分有上下限

不带上下限的是不定积分,不定积分的积分就与被积变量相关,以下式子就不成立 

记住


 对分字or分母的自变量不一样时的洛必达

洛必达是\frac{f(x)}{g(x)},因为分子是t的函数,所以求导是把上限x^{2}带入sin\frac{1}{\sqrt{t}},再乘x^{2}的导数;减去把下限x带入sin\frac{1}{\sqrt{t}},再乘x的导数


中值问题 

零点定理

记得方法一的零点定理证明(其实就是下面的介值定理)

记得红字公式

介值定理

 适用的情况(之一)


双中值题型

方法是分区间设点,易观察得当f(c)-1=-c时方程左右相等,可是根据右上红色的图发现x+y=1不一定和f(x)有交点,所以不一定存在点满足f(c)-1=-c

 此时可以用待定系数法

 错题本亦有相同类型的题以作补充


泰勒公式

参考文献:

假设想找出一个在x=0上与e^{x}重合的函数f(x),那么显然;令f(x)等于当x=0时e^{x}的值就可以了

但是显然,目前这个假设出来的函数f(x)和e^{x}并不重合,原因在于在x=0的这个点f(x)和e^{x}的斜率的变化率(二阶导)不同。以此为基础,导越多越精准

因此,要让它们的n阶导相同。

举个例子,要求它们的3阶导,则比3阶导阶数小的项会在求导的时候被导没,比3阶导大的项会在带入x=0后消除,所以f'''(0)=2*3!,要是e^{x}(原函数)求3阶导也等于2*3!,那么就非常完美

因此,f(x)的x的n次方前的系数,等于原函数求导n次的结果

 例题:因为{f}'(0)=0;所以省略不写;

因为{​{f}'}'(0)=1,所以cx^{2}求两次导等于1(见前面的笔记),所以c等于\frac{1}{2}(题中用b来表示)

因为次数大的是次数低的高阶无穷小(比如x^{2}是x的高阶无穷小,所以在展开到x^{n} 后,后面所有的项都是x^{n}的高阶无穷小

通过下面的泰勒公式的展开,可以推导出其它函数的泰勒展开

顺带一提:易发现sinx的泰勒展开求导后等于cosx的泰勒展开,而且因为sinx的泰勒展开的偶数项都是0,故不写

奇函数在泰勒展开中只能有奇次项

例题:因为两个奇函数相减得奇函数,所以可以把偶数次项的选项排除

记住公式

\arcsin x{}'=\frac{1}{\sqrt{1-x^{2}} }

0到\pi上f(sinx)(指变量是sinx的函数)的积分等于两倍0到\frac{\pi }{2}上f(sinx)的积分

2\int_{0}^{\frac{\pi}{2}}f(sinx)dx=\int_{0}^{\pi}f(sinx)dx原理:sinx关于\pi对称,则也会关于\frac{\pi }{2}对称

带拉格朗日余项的泰勒公式

这个泰勒公式与之前不同的是:

之前的泰勒公式必须要x趋于x_{0}才能用,但是带拉格朗日余项的泰勒公式不用要求这么严格

而且注意余项是\int_{}^{n+1}(\xi )而不是\int_{}^{n+1}(x-x_{0} )

注意,\xi是x的函数,在f(x)中的x取不同值时,\xi也取不同值

无穷小量的阶数

对于当x趋于0时的这样的函数,其无穷小量只与积分上限的无穷小量(n)和被积函数的无穷小量(m)相关

举个例子

稍微难一点:a选项:同阶相除,等于0阶

b选项,相当于变上限积分,利用换元法c是首先判断出e^{xt}趋近于1,故可以消去

然后把积分拆成上限为函数下限是0的形式,方便用上面提到的公式

两个式子是高阶加低阶,结果是低阶(减也一样)

由此推出一个重要结论:

上下限都是函数且阶数不一样的,把它们之中较低的阶数看作n,代入上面的公式

 D选项 积分上下限阶数一样的,可以考虑用积分中值定理 

中值出来得(x-sinx)sin^{\frac{3}{2}}c,同时因为sinx<c<x,故\frac{sin}{x}<\frac{c}{x}<\frac{x}{x},在x趋于0时1<c/x<1,故c与x同阶

把c=x带到(x-sinx)sin^{\frac{3}{2}}c就完了嗷

区间再现公式(重要!!!)

尤其是在三角函数中 

\int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx=\frac{1}{2}\int_{a}^{b}[f(x)+f(a+b-x)]dx

 利用区间再现求出来的被积函数(f(x)+f(-x))是偶函数

在函数上下限是对称的时候可以考虑下

而且对于一个偶函数来说,\int_{-\frac{\pi }{2}}^{\frac{\pi }{2}}=2\int_{0}^{\frac{\pi }{2}},可能在某些情况下化简有用

鸡分中值定理

几何意义

误区:

1.记住这个特殊情况!取不同的n,\xi的值也不同

同时,因为\xi不是常数,所以当n趋于无穷时\xi ^{n}不一定趋于0

非要理解的话可以借用上面的几何意义。因为n不同,所以f(x)不同,那要面积相等的f(\xi)自然也不同,所以\xi就跟着n变化

所以硬要写可以写成带下标n的形式,写成数列那种形式,毕竟\xi的值是跟着n变的

 硬要用鸡分中值定理的话,把引起变化的元凶x^{n}丢在积分符号里,其他的提出来,再对\int_{0}^{1}x^{n}dx求积分

\xi的具体值确实不知道,但它的范围就是x的范围

2.

因为仅仅能判断0<\xi<x;

\xi=\frac{1}{2}xx^{2},则虽然都符合0<\xi<x(在0<x<1时),但是它们一个极限是\frac{1}{2},一个是0,所以判断不出极限只有\xi比x高阶时才能求出

补充(鸡分中值定理2):

例题

补充(鸡分中值定理3)

技巧:最好往外提的是极限不等于0的项 

这里只看分子,因为x趋于0,ξ夹在x和0,所以ξ趋于x也趋于0

(x-\xi) 的极限趋于0,但是f(\xi )的极限不为0,所以往外提f(x)而不是(x-t)

柯西积分中值不等式

二重积分的轮换对称

引例在b站收藏心一学长那里,可看视频方便理解,这里不再赘述

看到积分区域有对称的特征就赶紧想一下轮换对称

例题

发现I1的tan(x+y^{2})在x轴上是奇函数,所以有\iint_{}^{}(2x^{2}+tan(xy^{2}))dxdy=\iint_{}^{}(2x^{2})dxdy+\iint_{}^{}tan(xy^{2}))dxdy

\iint_{}^{}tan(xy^{2})dxdy=\int tan(xy^{2})dx\int tan(xy^{2})dy(上下限懒得写)

最后发现\int tan(xy^{2})dx=0,故\iint_{}^{}(2x^{2}+tan(xy^{2}))dxdy=\iint_{}^{}(2x^{2})dxdy

I2一个道理,最后使用轮换对称把y换成x

同样的道理,把I3(这里老武写错了)拆分成只有x的项和只有y的项,对只有y的项使用轮换对称,把它们都换成x


华里士公式(重要)

记住下面这个出题模板

利用区间再现,且被积函数含有\frac{coxs}{1-sinx+cosx},积分区间是对称的,就可以利用下面这个模板

伯努利方程

eg:

微分方程 常系数齐次线性微分方程


凑微分小总结

{(xe^{x)}}'=(x+1)e^{x}

多元微分

微分方程

来自凯哥(并不重要) 

1.通解&特解的定义


2.齐次微分方程


3.一阶线性齐次微分方程

 


4.一阶线性非齐次微分方程 在算一阶线性非齐次微分方程,若遇到\intP(x)dx积出来的东西含绝对值,可以直接把绝对值符号去掉

假如\left | cosx \right |去掉绝对值后是负的,则中括号里面的\frac{1}{\left | cosx \right |}去掉绝对值后的负号可以抵消


5.一些题型

5.1

重点是含有y的n阶导和y的n+1阶导;且不含有y本身

不要拘泥于只是y的一阶导和二阶导 

5.2


6.二阶常系数齐次线性微分方程


7.二阶常系数齐次线性微分方程

 7.1 二阶常系数齐次线性微分方程 的特解的形式

   7.1.1 含e^{x}的特解

注意:示例3中,即使P_{n}(x)里不含x的一次项,假设y^{*}的时候也要把一次项(bx)带上

     

   7.1.2含三角函数的特解

 注意


8.n阶常系数齐次线性微分方程


反常积分

敛散性

记住:


二重积分

二类和一类的积分关于奇偶性的结论是相反的,也就是二类积分的偶函数积分结果为0,奇函数的积分结果为2倍


 

例题:

当P=1时,\int \frac{ln^{m}x}{x}dx=\int \ln^{m}xd(lnx)


以下内容来自阿赞学长 

记住一个重点:f(x)越小越收敛;推出:

f(x)是无穷小,阶数越高越收敛;

f(x)是无穷大,阶数越低越收敛。

当x趋于无穷大时,低阶加高阶等于高阶;

当x趋于0时,低阶加高阶等于低阶


判断有几个瑕点,每次只处理一个瑕点(瑕点指的是x \to\infty或无穷间断点)

而且只处理瑕点,假如下限0不是瑕点的话则不用处理

eg:

只处理一个瑕点指的是把\int_{0}^{+\infty }\frac{1}{\sqrt{x+x^{2}}}dx拆分成\int_{0}^{1}+\int_{1}^{+\infty },然后分别讨论

注意:\frac{1}{\sqrt{x+x^{2}}}趋于0^{+}(无穷小)和趋于+\infty(无穷大)时的等价不一样

将f(x)等价无穷小(大),乘以非零常数;敛散性不变

 指数函数发散远快于一般函数,收敛也是

比如:\lim_{x \to\infty }\frac{x^{2}}{e^{x^{2}}}收敛

只要a大于0,下面这个积分必发散;取下限为2是为了避开使分母为0的点,(同理取3也行)

\int_{2}^{+\infty }\frac{1}{ln^{a}x}dx


微分

1.判定是否可微

一般性判别方法:(3)

比较快的判别方法

  当极限\frac{f(x,y)-f(0,0)}{\sqrt{x^{2}+y^{2}}}=0可判定f(x,y)在(0,0)可微,但是若极限不存在或不等于0不一定能推出f(x,y)在(0,0)不可微;

但是若\int_{x}^{}(0,0)=\int_{y}^{}(0,0)=0;这两个命题就可以互推

实操:

一般像这种分子相乘然后分母是个平方的可以考虑一下设y=kx;

这样会得出lim\frac{xy}{x^{2}+y^{2}}是个依赖于k的数,故极限不存在

换句话说,分子和分母次方相同(把xy相乘看作二次方),极限不存在

像这种分子是两次分母是1次的,极限趋于0

 


利用上面的“比较快的判断可微”的公式,因为sin\frac{1}{x^{2}+y^{2}}常数,\sqrt{x^{2}+y^{2}}趋于0,故极限趋于0,可微


 利用先带后求,发现只要y=0,f(x,0)一直为0,即\int_{x}^{'}(0,0)=0,同理\int_{y}^{'}(0,0),可以用上面的“比较快的判断可微”的公式,发现极限不存在


偏导数

隐函数求导 

多元函数求导

 这里只看du求导法

错误解法: 

 

正解:因为已经说明了z是x,y的函数;根据多元函数的微分不变性,所以没必要写出中间变量z

\varphi (x+y,z)=1求导即可得到\varphi 1+\varphi 2\frac{\delta z}{\delta x}=0 


三重积分

形心公式

设有一个质量均匀分布且对称的物体

它的质心坐标为

 所以推出下面公式。

\rho (x,y)是密度系数,在质量分布均匀的物体中,它是常数。

应用:


级数

积分判别法


总结的一些套式 

看到幂指函数(如下面这样)

可以用\lim (1+n)^{\frac{1}{n}}的那两个式子

可以用等价无穷小(1+x)^{n}=nx

也可以用下面这个,转化为e^{ln}的式子

下面通过统一结构化简式子 


错题book

 使用泰勒

f(x)=f(0)+f'(0)x+o(x),而且由题可知f(0)=0


注意力惊人地使用了拉格朗日

当x趋于0时,x-acrtanx~\frac{x^{3}}{3}

当x趋于0时,arctanx~x


虽然很想把两个分式的分母e^{x}-1和sinx分别等价代换变成x,这样就是同分母可以直接加减

但是由于等价代换精度还是不够,所以这里只能同分,然后把 e^{x}-1*sinx等价成x^{2}


解法1:

使用夹逼法,记住结论当x>0时,\frac{x}{1+x}<ln(1+x)<x

第四行的ln(1+\frac{k}{n^{2}})相当于lnx_{n} 的第k项

所有项ln(1+\frac{k}{n^{2}})(k=1,2,3....)加起来等于lnx_{n},所以对\frac{k}{n^{2}+n}\frac{k}{n^{2}}求和,找lnx_{n}的范围

解法2:

经典的错误标准的零分:

无穷项之和的极限不等于无穷项极限之和

所以等式\lim_{n \to\infty }lnx_{n}=\lim_{n \to\infty }ln(1+\frac{1}{n^{2}})+....不成立


 

使用不等式放缩,目标是统一形式,不一定要把ln(1+x)放缩成x,也可以把x放缩成ln(1+x) 

左边的不等式是用了ln(1+\frac{1}{n})<\frac{1}{n},右边的不等式是用了\frac{1}{n+1}<ln(1+\frac{1}{n})

比如,中间的第一项是1,对于左边,可以看成n=1;对于右边,可以看成1/n+1=1;即n=0

 


双中值问题一般是分区间设点,比如这里就以c为点,把区间分成[0,c]和[c,1],分别用拉格朗日定理

然后利用观察法看出当F(c)=\frac{I}{2}时等式左右相等

然后再利用介值定理证明在(0,1)范围内,F(x)存在函数值\frac{I}{2}分区间设点时,一定要保证函数值存在) 


 遇见积分F(x),可以把原函数f(x)看成F(x)求导后的结果


遇见cosx为奇次项的问题,可以构造dsinx

或者也可以(第四步把减号换成加号):

实在不会可以试一下把分母裂项的方法 


求两个方程的通解

可以先求出第一个方程的通解(含C_{1} C _{2};再带入第二个方程求C_{1} C _{2};此法亦在线性代数中有体现)


 遇见n项和极限,可以选择夹逼或者定积分定义 

但是注意,夹逼的最大值不一定是n不要无脑夹逼


 答案为D

有f(x),f''(x)可以想泰勒公式


答案为a 

等式两边同时除以\frac{1}{ab},可以得到下面这个函数;


有f(x)和f'(x),要把这两者联系起来,考虑三个方法:

中值定理

变上限积分

分部积分 

 这里主要用到了柯西中值积分不等式:就是蓝色框的那个

求出f^{2}(x)后再进行积分就可以了,注意\int_{\frac{1}{2}}^{1}f^{'2}(t)dt\int_{0}^{\frac{1}{2}}f^{'2}(t)dt是定积分,在积分时看作常数


317题

选c 

判断连续

当(x,y)趋近于0的时候,用夹逼法判断f(x,y)的值

\frac{y^{2}}{x^{2}+y^{2}}<=1(显而易见),所以\frac{y^{2}x}{x^{2}+y^{2}}\leq x,然后x趋近于0

 判断是否可导,可以用:

1.定义法

分别求x,y的偏导(根据题目,这里只用判断在(0,0)点有无偏导即可)

 2.先代后求(分界点最好用定义法,具体点最好用先代后求),发现f(x,0)是常数,是存在的;故在(0,0)点可导

补充:这里的先代后求指的是当x不等于0时,将y=0代入f(x,y)=\frac{y^{2}sinx}{x^{2}+y^{2}};自然得出f(x,y)=0(x不等于0时)

在算x=0时,根据题目:在x=0,y=0时,f(x,y)=0

判断是否可微

极限存在且为0就可微

 利用f_{x},f_{y}都等于0,且\Delta z=f(x0+\Delta x,y0+\Delta y)-f(x0,y0)(也就是把题中的f(x,y)的式子中的x,y换成\Delta x\Delta y),和\rho =\sqrt{(\Delta x)^{2}+(\Delta y)^{2}},就得到下面这个式子

有一个初步判断技巧:分子是一次乘二次,就是三次;

分母是平方的3/2次,也是三次;

那么这样分子分母同次数的。极限一般不存在

那么严谨的解法就是:整理好式子后令\Delta y=k\Delta x,发现这个极限与k有关,故不存在,原函数不可微 


求偏导数的简单方式

答案为-1

1.先带后求,把x=0带入z,求出f(0,y)的表达式

 2.可以直接对y求导,这样就可以算出z对y的偏导。但这里有一个更简单的方法,就是利用导数的定义

 

二重积分的极坐标画法可以看作是一个圆心在原点,半径不断扩大的圆(这个圆指的是蓝色那个,红色的是题目给的圆)我们要求的是红圆画虚线部分

\theta <=\frac{\pi }{4}的时候,蓝圆的半径最大为\sqrt{2}(可由下面的图算出)

当蓝圆半径超过\sqrt{2},就要通过半径来反解出角度了(因为r=2cos\theta,故\theta =arccos\frac{r}{2}   )


这题很简单,对g(x)换元后求导即可;

但重点不是解法,在做这题时不能直接套用f'(x)+g'(x)=x;因为g'(x)是关于x求导,而g(x)的自变量x被放在一个关于t的积分里面。所以要换元,同一变量后才能求导 


看到这种题,可以想到利用\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}

写数列极限时,要有像\frac{a1}{2}-\frac{a1}{3}+\frac{a2}{3}-\frac{a2}{4}=\frac{a1}{2}+\frac{a2-a1}{3}-\frac{a2}{4}这样逐项相消的思维(类似于高中那样)

最后求an/n+2则是利用stolze定理,发现等于0

解法2:


 做三重积分的简便方法

首先是积分域关于y轴对称(右图),所以y的奇函数(2xy,2y)都为0

 其次是对1积分就是求积分域的周长(2pi)【积分域是线,所以是周长,若是一整个圆,则积分结果是面积

最后是因为原积分域的圆心不在原点,所以直接向左平移曲线C到原点(令x=x-1),这样积分域就关于x对称,也可以消去x的奇函数


解1(重点)

 重点:因为积分区域里(0,0)里线积分\frac{xdy-ydx}{x^{2}+xy+y^{2}}不存在偏导,所以用不了格林公式。

那我们针对这种情况可以使用上面的方法,

利用该线积分....相等,给线积分换个范围,换成C,令分母为1就好做了

解2:

与方法1的区别是:在令分母为1后,剩下的xdy-ydx可以使用格林公式。

最后问题就转化为求曲线C(椭圆)的面积 

解3:

还是求面积,但前面的思路是利用配方法或者线代里把二次型变成标准型的方法;求出C(椭圆)的a,d;就能用S=pi ab 

解3的思路是长半轴是椭圆上离坐标原点距离最远的点;同理短半轴是距离最近的点

设椭圆上的点坐标(x,y),距离为\sqrt{x^{2}+y^{2}},为了方便计算,直接平方变成x^{2}+y^{2}

解4:

因为sin\theta cos\theta=\frac{1}{2}sin2\theta,以pi为周期,所以\int_{0}^{2\pi}...=2\int_{0}^{\pi}... 

易错点:1.tan\frac{\pi}{2}=\infty,应当把函数分段

2.错认为最下边的式子都是arctan(\infty )=pi/2,最后一个式子得出\frac{\pi}{2}-\frac{\pi}{6}+\frac{\pi}{6}-\frac{\pi}{2}=0

因为右边式子的\frac{\pi }{2}在下限,所以\theta是从大于\frac{\pi }{2}的一端趋向\frac{\pi }{2},这样导致tan\theta趋于负无穷(画个图会好理解),且arctan(-\infty )=-\frac{\pi}{2},所以最后是\frac{\pi}{2}-\frac{\pi}{6}+\frac{\pi}{6}+\frac{\pi}{2}=\pi


易错点

使用拉格朗日不等式后会产生新的参数\xi

它和x不是一个东西,使用洛必达求导的时候注意要把\xi和x分开


必须要注意:

在无穷级数中,只有正项级数才能使用等价代换 

只讨论A,因为A是交错级数;所以直接展开成\frac{(-1)^{n}}{\sqrt{n}}会出错

这时候,只能使用泰勒展开,而且必须要展开到正负不变的那一项


解:

考虑到积分区间是0到2x,而x恰好是积分区间的中点;

所以考虑变量代换,创造对称区间,利用奇偶性

变上限积分求导公式:

(\int_{a}^{\varphi (x)}f(t)dt)'=f(\varphi (x))\varphi '(x)

或者也可以这样拆绝对值计算

这个积分是对t积分,在0-x区间对t积分,上限是x下限是0,t只在(0,x)内,可不就是t<x吗,在x-2x同理


变量代换法,令t=\frac{ln(1+x)}{x};

注意x趋于0时,x^{2}趋于0,而\frac{ln(1+x)}{x}趋于1;

所以先让 \frac{ln(1+x)}{x}先减1,在等价代换

总结:在极限中的变量代换,可以先看要代换的东西的极限是什么

而且注意,不要一次性等价代换太多比如:第一行的\lim\limits_{x\to0}\frac{e^{\xi }\left[(1 + x)^{\frac{1}{x}}-\frac{e\ln(1 + x)}{x}\right]}{x^{2}}就不可以变成(1 + x)^{\frac{1}{x}}-\frac{e\ln(1 + x)}{x}\sim e-\frac{e\ln(1 + x)}{x}\sim e\left(1 - \frac{\ln(1 + x)}{x}\right)\sim e\times\frac{1}{4}x^{2};不然可能会损失精度


这里主要介绍一个小技巧:

在处理分母过于复杂而分子简单的时候,可以取它的倒数;

比如这里[\frac{n^{2}}{n^{2}+n+lnn}]^{n}=[\frac{n^{2}+n+lnn}{n^{2}}]^{-n};这样后面处理就简单多了

当然\lim_{n \to \infty }[\frac{n^{2}}{n^{2}+n+lnn}]^{n}是个1的无穷大,可以用解1的无穷大次方的方法来做,但这样就慢了


 遇见形似于du(x,y)=P(x,y)dx+Q(x,y)dy;

就可以使用全微分公式:\frac{\delta P}{\delta y}=\frac{\delta Q}{\delta x};

利用上述公式分别求偏导,就有下面:

 之后得出:

 这种时候可以使用偏积分或凑微分两种方式,这里使用凑微分:

就是把等号右边d前的参数全部放到d后边去;这里以ydx+(x+1)dy举例:

yd(x+1)+(x+1)dy=d((x+1)y)

最后凑完微分,去掉d,如下图

 完整解题过程:


发现\frac{b-a}{n},联想[a,b]的n等分区间(要时刻注意这种把积分区间n等分的形式

下面把\int_{b}^{a}f(x)dx变成\sum_{k=1}^{n}\int_{xk-1}^{xk}f(x)dx就是为了让式子形式统一(重点记一下这样转换积分的思路)

这里a,k,h都与积分变量x无关,所以函数f(xk)实际上是常数

这里\sum_{k=1}^{n}hf(x)=\int_{a}^{b}f(x)dx(结合定积分的定义\int_{a}^{b}f(x)dx=\lim_{n\rightarrow \infty }\sum_{i=1}^{n}f(\xi _{i})\Delta x)

 这里利用拉格朗日定理和积分中值定理处理f(x)-f(xk)的思路可以记一下

解:

补充:定积分的定义:设函数f(x)在[a,b]上有界,插入分点a = x_0 < x_1 < \cdots < x_n = b分区间[a,b]为n个小区间[x_{i - 1},x_i],长\Delta x_i = x_i - x_{i - 1}在各小区间任取\xi_i,作和S_n = \sum_{i = 1}^{n}f(\xi_i)\Delta x_i,记\max_{1\leq i\leq n}\{\Delta x_1,\cdots,\Delta x_n\}为\|\Delta x\|。若\|\Delta x\|\to 0时,S_n总趋于确定极限I,则称I为f(x)在[a,b]上的定积分,记\int_{a}^{b}f(x)dx = \lim_{\|\Delta x\|\to 0}\sum_{i = 1}^{n}f(\xi_i)\Delta x_i

定义不重要,重要的是\int_{a}^{b}f(x)dx = \lim_{\|\Delta x\|\to 0}\sum_{i = 1}^{n}f(\xi_i)\Delta x_i里的f(\xi )里的\xi_i是小区间[x_{i - 1},x_i]里任取的

本题的小区间自然是\frac{b-a}{n},而且左端点是a,那么第一个小区间里的\xi_1可以是a+\frac{b-a}{n},第二个小区间里的\xi_2可以是a+\frac{b-a}{n}*2

所以本题的a+k\frac{b-a}{n}就相当于\xi_i结合定积分的定义\int_{a}^{b}f(x)dx=\lim_{n\rightarrow \infty }\sum_{i=1}^{n}f(\xi _{i})\Delta x


 零散公式


 一元积分里边的公式有时候多元积分也能用

 这里\sqrt{2xy-y^{2}}=\sqrt{x^{2}-(y-x)^{2}};

y-x=xsint;换元,就有\sqrt{x^{2}-x^{2}sint^{2}}


二重积分的“可爱因子”

 补充:\frac{1}{n}算是把0到1分成n段。而\int_{1}^{2i-1/2n}可以看作关于i的函数

(2i—1)/2n,这个i/n就是x,也就能看出当n→无穷时,只剩下了i/n,也就是x

那个变上限积分的上限2n分之2i-1是如何变成x的:通常用的是每个小矩形右端点的高度,然而这题用的是小矩形中点的高度,实际上我们可以用小矩形任意点的高度,减去的1/2n意思就是从右端点处再往左移动半个小矩形的宽度,这就是中点啦!


无穷级数判敛,出现这三个一般是比值法或者根值法,没有的话就是比较法或者比较法的极限形式

比如这道,就是用比较判敛法,答案为D 因为与\frac{1}{n^{\alpha }}相除结果为常数1+\alpha,所以同敛散性。

详细步骤在下面: 


判断函数是否为周期函数,只需看在一个周期的积分上是否为0

如下面这个

 

则f(x)是以2pi为周期的周期函数 


使用洛必达需要注意的问题

 注意箭头指向的等号

要这个等号相等,必须有f''(x)连续;

但是二阶导存在并不一定代表二阶导连续

再看多出来的这个箭头;

需要f'(x)-2/2x使用洛必达,就必须保证\lim_{x\rightarrow 0}f''(x)存在(使用洛必达后极限存在)

但f''(x)存在不等于\lim_{x\rightarrow 0}f''(x)存在

注意 :可导必连续针对的是f(x),不能用在f'(x),f''(x)这些上

 用不了洛必达的时候可以考虑导数的定义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值