武忠祥版(因为凯哥版字太多)
极限
只有整体乘除才能用等价无穷小
记住下面的公式
当x属于(0,pi/2)时,sinx<x<tanx
当x属于(0,正无穷)时,
要记得在式子中寻找相除等于非零常数的因子,比如下面这个
这需要在考场上自己发现出来
基本就是看分式上下未知数的次数相等
记住
时,
arcsinx-x ~
x-arctanx~
利用当
<1,
=0;
当>1,
趋于无穷;
当=1,分两种情况讨论;
仅由下面这个式子,也能推出f(0)=0
因为当x趋于0时,等于0
因为f(0)除以0等于常数1,所以f(0)也等于0
记住
注意,或
极限不存在不代表f(x)无界
如sinx在x趋于无穷时极限不存在,但是sinx明显有界
且,由原函数单调推无界是不充分的,如f(x)=,对于所有 x≥1,都有 0<f(x)≤1。
注意,f(x)在(a,b)上有界推不出f(a+0),f(b-0)存在
例题:
补充:对于,若x趋于无穷则
趋于正无穷,若x趋于负无穷则
趋于0(重点)
下列的式子:
因为在在t趋于x的条件下等于1,所以用ln(x)~x-1(x趋于1)的公式就可以了
原函数若为周期函数,则其一,二阶导也为周期函数,且求导后的函数以原来函数的周期为周期
求导改变原函数的奇偶性
多种题型的处理方式
记住:型的解法有3种:
洛必达 泰勒 等价代换
解法有一种,把原式化成
,原式即等于e^
型,需要把无穷因子(指引起整个式子趋于无穷的最大项)提出来
如这里,是无穷因子
如果无穷因子在分母,则要通分,化成型(配合下面的高阶+低阶~低阶一起食用)
当n趋于无穷时:
拿到题,先估计,由上面知道趋于1,1/lnx趋于0,故这是一个
的题;适合取对数
幂指函数的求导(利用多元复合微分)
意味着写这类含幂指函数的题不一定要取对数了,洛必达也可以
记住
高阶加低阶等于低阶
化简加号右边的式子的分母
记住时,
(可能是因为当x趋于0时,
趋于
,因为x趋于0,所以可能变成x+
-1)
当x趋于0时,趋于e,所以这个积分的次数等于积分变量的次数*(被积函数的次数+1)=2
然后就直接消掉(低加高~低),再对剩下的分母进行等价代换
另外一种常见的应用:
因为是
的高阶,所以相加时可以直接把含
的项写入o(
)
留数法
精髓就是把分母裂项,然后设出来的分子的次数比分母最高次数少1
如分母是,分子就设为Bx+C
最后就是算出待定系数A,B,C
方法1:等式两边同乘原分母(1+),得到式子1=A(
-x+1)+(x+1)(Bx+c)
方法2:令x=-1,算出A,再令x等于几个特殊值,算出B和C
间断点
若f(x)在区间I上处处可导,则其导函数在区间I上没有第一类间断点和无穷间断点
找极值和拐点
以下函数都是左右极限不一定相等的
4指的是取整函数
例题
e的次方项的极限
比如该题
不能求
但是下面一题,可以求
究其原因,是因为上面的极限是无穷,而下面的极限是常数
数列
数列の极限
递推数列
例题
解1对应方法1,归纳法可以看我在b站收藏的视频
首先由题可知,x1-x0>0;的等式是由
得到
假设>0;此时
是递增数列,且
=1;则(1+
)(1+
)>0
可推出>0;故假设陈丽
然后令n趋于无穷时=a;
既然n趋于无穷,那么也可以看作
,故
解法3(好处是不需要知道数列xn的单调性):
假设收敛于a,再验证假设是否陈力
;又因为
;所以以此类推;
有;因为A要求是小于1的数;故
趋于0;推出
-a=0;则
趋于a
和a的表达式均在解法1中可以找到,这样就可以拼凑出|
-a|的表达式
单调增上无界
再来一题
这题的重点就是找出的范围
这样在使用上面的解法3时,方便确定的范围
递推函数法
比如;则递推函数等于f(x)=
但是递推函数单调递增原数列单调递增:
比如a1=,a2却等于
但是递推函数单调递增原数列存在单调性:
具体对应:a2>a1an单调递增
a2<a1an单调递减
但是递推函数单调递减推不出原数列存在单调性;只能用其它方法
判断数列极限是否存在
法一:特殊值法
常用的判断这类题型是否有极限的特殊值时
把代入选项中可证伪B,C
观察A是a加上a的倒数的形式,于是最好把特殊值凑成和选项一样的形式,变成
法二:函数判断法(麻烦)
视an作x,把复合数列看做f(x),画出图像后直接横着来亿刀,看能不能砍中图像一次以上,如果能,那f(an)收敛就不能推出an收敛,等价的逆否命题就是an发散不能推出f(an)发散
如:下图是函数的图像(先求f'(x)再画图会方便点),显然能被一条横线穿两次,故发散
求解数列的极限
一般使用放缩法
下面还有斯特林公式
重点记住倒数第2,3行的化简方式
倒3利用了在n趋于无穷时,n+1~n,这样就可以把1去掉方便计算
倒2利用在n趋于无穷时,~1(等式上下同除n),这说明拿到较为复杂的分式时,一定要注意观察分式的那些部分是可以约去的,不要一股脑乘在一起
顺带一提,考试中不能直接使用斯特林公式,需要写证明过程
放缩法详见:
备注:,这是一条公式
判断数列的极限是否存在最大(小)值
因为极限是一个范围,如f(x)的极限是2不代表f(x)最大只能取到2,只是代表以2为圆心,以任意小的数为半径画圆,都有f(x)的值在圆里
例题
推论:M,m指最大(小)值
因为收敛,所以总存在一个数不是大于收敛值就是小于收敛值
不定积分
变上限积分求导公式:
不能像这样子把极限拿到积分符号里边,因为积分符号也算是个极限,
要解此题,先判断,因为x是0和1之间的数,所以n趋向于无穷的时候趋向于0,又因为
在x=(0,1)上有界,所以最终结果可能是0;
大概判断后,可以用夹逼法;
易知dx大于0,所以只要放大,让bn<=0即可
详细如下图,因为x的范围是(0,1),所以
倒代换
记得区分
和
补充一个:
倒代换重点在于定积分的积分与被积变量无关,故被积变量t能换成x
因为相等,所以等于两倍的
(这里和区间再现有点相似)
再用之前宇哥版本的笔记提到过的的固定凑微分方法就可以继续往下写了
必须要求积分有上下限
不带上下限的是不定积分,不定积分的积分就与被积变量相关,以下式子就不成立
记住
对分字or分母的自变量不一样时的洛必达
洛必达是,因为分子是t的函数,所以求导是把上限
带入
,再乘
的导数;减去把下限x带入
,再乘x的导数
中值问题
零点定理
记得方法一的零点定理证明(其实就是下面的介值定理)
记得红字公式
介值定理
适用的情况(之一)
双中值题型
方法是分区间设点,易观察得当f(c)-1=-c时方程左右相等,可是根据右上红色的图发现x+y=1不一定和f(x)有交点,所以不一定存在点满足f(c)-1=-c
此时可以用待定系数法
错题本亦有相同类型的题以作补充
泰勒公式
参考文献:
假设想找出一个在x=0上与重合的函数f(x),那么显然;令f(x)等于当x=0时
的值就可以了
但是显然,目前这个假设出来的函数f(x)和并不重合,原因在于在x=0的这个点f(x)和
的斜率的变化率(二阶导)不同。以此为基础,导越多越精准
因此,要让它们的n阶导相同。
举个例子,要求它们的3阶导,则比3阶导阶数小的项会在求导的时候被导没,比3阶导大的项会在带入x=0后消除,所以f'''(0)=2*3!,要是(原函数)求3阶导也等于2*3!,那么就非常完美
因此,f(x)的x的n次方前的系数,等于原函数求导n次的结果
例题:因为=0;所以省略不写;
因为=1,所以c
求两次导等于1(见前面的笔记),所以c等于
(题中用b来表示)
因为次数大的是次数低的高阶无穷小(比如是x的高阶无穷小,所以在展开到
后,后面所有的项都是
的高阶无穷小
通过下面的泰勒公式的展开,可以推导出其它函数的泰勒展开
顺带一提:易发现sinx的泰勒展开求导后等于cosx的泰勒展开,而且因为sinx的泰勒展开的偶数项都是0,故不写
奇函数在泰勒展开中只能有奇次项
例题:因为两个奇函数相减得奇函数,所以可以把偶数次项的选项排除
记住公式
0到上f(sinx)(指变量是sinx的函数)的积分等于两倍0到
上f(sinx)的积分
原理:sinx关于
对称,则也会关于
对称
带拉格朗日余项的泰勒公式
这个泰勒公式与之前不同的是:
之前的泰勒公式必须要x趋于才能用,但是带拉格朗日余项的泰勒公式不用要求这么严格
而且注意余项是而不是
注意,是x的函数,在f(x)中的x取不同值时,
也取不同值
无穷小量的阶数
对于当x趋于0时的这样的函数,其无穷小量只与积分上限的无穷小量(n)和被积函数的无穷小量(m)相关
举个例子
稍微难一点:a选项:同阶相除,等于0阶
b选项,相当于变上限积分,利用换元法c是首先判断出
趋近于1,故可以消去
然后把积分拆成上限为函数下限是0的形式,方便用上面提到的公式
两个式子是高阶加低阶,结果是低阶(减也一样)
由此推出一个重要结论:
上下限都是函数且阶数不一样的,把它们之中较低的阶数看作n,代入上面的公式
D选项 积分上下限阶数一样的,可以考虑用积分中值定理
中值出来得(x-sinx),同时因为sinx<c<x,故
,在x趋于0时1<c/x<1,故c与x同阶
把c=x带到(x-sinx)就完了嗷
区间再现公式(重要!!!)
尤其是在三角函数中
利用区间再现求出来的被积函数(f(x)+f(-x))是偶函数
在函数上下限是对称的时候可以考虑下
而且对于一个偶函数来说,,可能在某些情况下化简有用
鸡分中值定理
几何意义
误区:
1.记住这个特殊情况!取不同的n,的值也不同
同时,因为不是常数,所以当n趋于无穷时
不一定趋于0
非要理解的话可以借用上面的几何意义。因为n不同,所以f(x)不同,那要面积相等的f()自然也不同,所以
就跟着n变化
所以硬要写可以写成带下标n的形式,写成数列那种形式,毕竟的值是跟着n变的
硬要用鸡分中值定理的话,把引起变化的元凶丢在积分符号里,其他的提出来,再对
求积分
的具体值确实不知道,但它的范围就是x的范围
2.
因为仅仅能判断0<<x;
若=
或
,则虽然都符合0<
<x(在0<x<1时),但是它们一个极限是
,一个是0,所以判断不出极限
只有
比x高阶时才能求出
补充(鸡分中值定理2):
例题
补充(鸡分中值定理3)
技巧:最好往外提的是极限不等于0的项
这里只看分子,因为x趋于0,ξ夹在x和0,所以ξ趋于x也趋于0
(x-) 的极限趋于0,但是
的极限不为0,所以往外提f(x)而不是(x-t)
柯西积分中值不等式
二重积分的轮换对称
引例在b站收藏心一学长那里,可看视频方便理解,这里不再赘述
看到积分区域有对称的特征就赶紧想一下轮换对称
例题
发现I1的在x轴上是奇函数,所以有
(上下限懒得写)
最后发现=0,故
I2一个道理,最后使用轮换对称把y换成x
同样的道理,把I3(这里老武写错了)拆分成只有x的项和只有y的项,对只有y的项使用轮换对称,把它们都换成x
华里士公式(重要)
记住下面这个出题模板
利用区间再现,且被积函数含有,积分区间是对称的,就可以利用下面这个模板
伯努利方程
eg:
微分方程 常系数齐次线性微分方程
凑微分小总结
多元微分
微分方程
来自凯哥(并不重要)
1.通解&特解的定义
2.齐次微分方程
3.一阶线性齐次微分方程
4.一阶线性非齐次微分方程 在算一阶线性非齐次微分方程,若遇到
P(x)dx积出来的东西含绝对值,可以直接把绝对值符号去掉
假如去掉绝对值后是负的,则中括号里面的
去掉绝对值后的负号可以抵消
5.一些题型
5.1
重点是含有y的n阶导和y的n+1阶导;且不含有y本身
不要拘泥于只是y的一阶导和二阶导
5.2
6.二阶常系数齐次线性微分方程
7.二阶常系数齐次线性微分方程
7.1 二阶常系数齐次线性微分方程 的特解的形式
7.1.1 含的特解
注意:示例3中,即使里不含x的一次项,假设
的时候也要把一次项(bx)带上
7.1.2含三角函数的特解
注意:
8.n阶常系数齐次线性微分方程
反常积分
敛散性
记住:
二重积分
二类和一类的积分关于奇偶性的结论是相反的,也就是二类积分的偶函数积分结果为0,奇函数的积分结果为2倍
例题:
当P=1时,
以下内容来自阿赞学长
记住一个重点:f(x)越小越收敛;推出:
f(x)是无穷小,阶数越高越收敛;
f(x)是无穷大,阶数越低越收敛。
当x趋于无穷大时,低阶加高阶等于高阶;
当x趋于0时,低阶加高阶等于低阶
判断有几个瑕点,每次只处理一个瑕点(瑕点指的是或无穷间断点)
而且只处理瑕点,假如下限0不是瑕点的话则不用处理
eg:
只处理一个瑕点指的是把拆分成
,然后分别讨论
注意:趋于
(无穷小)和趋于
(无穷大)时的等价不一样
将f(x)等价无穷小(大),乘以非零常数;敛散性不变
指数函数发散远快于一般函数,收敛也是
比如:收敛
只要a大于0,下面这个积分必发散;取下限为2是为了避开使分母为0的点,(同理取3也行)
微分
1.判定是否可微
一般性判别方法:(3)
比较快的判别方法
当极限=0可判定f(x,y)在(0,0)可微,但是若极限不存在或不等于0不一定能推出f(x,y)在(0,0)不可微;
但是若;这两个命题就可以互推
实操:
一般像这种分子相乘然后分母是个平方的可以考虑一下设y=kx;
这样会得出lim是个依赖于k的数,故极限不存在
换句话说,分子和分母次方相同(把xy相乘看作二次方),极限不存在
像这种分子是两次分母是1次的,极限趋于0
利用上面的“比较快的判断可微”的公式,因为常数,
趋于0,故极限趋于0,可微
利用先带后求,发现只要y=0,f(x,0)一直为0,即=0,同理
,可以用上面的“比较快的判断可微”的公式,发现极限不存在
偏导数
隐函数求导
多元函数求导
这里只看du求导法
错误解法:
正解:因为已经说明了z是x,y的函数;根据多元函数的微分不变性,所以没必要写出中间变量z
求导即可得到
三重积分
形心公式
设有一个质量均匀分布且对称的物体
它的质心坐标为
所以推出下面公式。
且是密度系数,在质量分布均匀的物体中,它是常数。
应用:
级数
积分判别法
总结的一些套式
看到幂指函数(如下面这样)
可以用的那两个式子
可以用等价无穷小
也可以用下面这个,转化为的式子
下面通过统一结构化简式子
错题book
使用泰勒
f(x)=f(0)+f'(0)x+o(x),而且由题可知f(0)=0
注意力惊人地使用了拉格朗日
当x趋于0时,x-acrtanx~
当x趋于0时,arctanx~x
虽然很想把两个分式的分母和sinx分别等价代换变成x,这样就是同分母可以直接加减
但是由于等价代换精度还是不够,所以这里只能同分,然后把 *sinx等价成
解法1:
使用夹逼法,记住结论当x>0时,
第四行的相当于ln
的第k项
所有项(k=1,2,3....)加起来等于ln
,所以对
和
求和,找ln
的范围
解法2:
经典的错误标准的零分:
无穷项之和的极限不等于无穷项极限之和
所以等式不成立
使用不等式放缩,目标是统一形式,不一定要把ln(1+x)放缩成x,也可以把x放缩成ln(1+x)
左边的不等式是用了,右边的不等式是用了
比如,中间的第一项是1,对于左边,可以看成n=1;对于右边,可以看成1/n+1=1;即n=0
双中值问题一般是分区间设点,比如这里就以c为点,把区间分成[0,c]和[c,1],分别用拉格朗日定理
然后利用观察法看出当F(c)=时等式左右相等
然后再利用介值定理证明在(0,1)范围内,F(x)存在函数值(分区间设点时,一定要保证函数值存在)
遇见积分F(x),可以把原函数f(x)看成F(x)求导后的结果
遇见cosx为奇次项的问题,可以构造dsinx
或者也可以(第四步把减号换成加号):
实在不会可以试一下把分母裂项的方法
求两个方程的通解
可以先求出第一个方程的通解(含;再带入第二个方程求
;此法亦在线性代数中有体现)
遇见n项和极限,可以选择夹逼或者定积分定义
但是注意,夹逼的最大值不一定是n不要无脑夹逼
答案为D
有f(x),f''(x)可以想泰勒公式
答案为a
等式两边同时除以,可以得到下面这个函数;
有f(x)和f'(x),要把这两者联系起来,考虑三个方法:
中值定理
变上限积分
分部积分
这里主要用到了柯西中值积分不等式:就是蓝色框的那个
求出后再进行积分就可以了,注意
和
是定积分,在积分时看作常数
317题
选c
判断连续
当(x,y)趋近于0的时候,用夹逼法判断f(x,y)的值
<=1(显而易见),所以
,然后x趋近于0
判断是否可导,可以用:
1.定义法
分别求x,y的偏导(根据题目,这里只用判断在(0,0)点有无偏导即可)
2.先代后求(分界点最好用定义法,具体点最好用先代后求),发现f(x,0)是常数,是存在的;故在(0,0)点可导
补充:这里的先代后求指的是当x不等于0时,将y=0代入f(x,y)=;自然得出f(x,y)=0(x不等于0时)
在算x=0时,根据题目:在x=0,y=0时,f(x,y)=0
判断是否可微
极限存在且为0就可微
利用,
都等于0,且
(也就是把题中的f(x,y)的式子中的x,y换成
和
),和
,就得到下面这个式子
有一个初步判断技巧:分子是一次乘二次,就是三次;
分母是平方的3/2次,也是三次;
那么这样分子分母同次数的。极限一般不存在
那么严谨的解法就是:整理好式子后令,发现这个极限与k有关,故不存在,原函数不可微
求偏导数的简单方式
答案为-1
1.先带后求,把x=0带入z,求出f(0,y)的表达式
2.可以直接对y求导,这样就可以算出z对y的偏导。但这里有一个更简单的方法,就是利用导数的定义
二重积分的极坐标画法可以看作是一个圆心在原点,半径不断扩大的圆(这个圆指的是蓝色那个,红色的是题目给的圆)我们要求的是红圆画虚线部分
当的时候,蓝圆的半径最大为
(可由下面的图算出)
当蓝圆半径超过,就要通过半径来反解出角度了(因为
,故
)
这题很简单,对g(x)换元后求导即可;
但重点不是解法,在做这题时不能直接套用;因为g'(x)是关于x求导,而g(x)的自变量x被放在一个关于t的积分里面。所以要换元,同一变量后才能求导
看到这种题,可以想到利用
写数列极限时,要有像这样逐项相消的思维(类似于高中那样)
最后求an/n+2则是利用stolze定理,发现等于0
解法2:
做三重积分的简便方法
首先是积分域关于y轴对称(右图),所以y的奇函数(2xy,2y)都为0
其次是对1积分就是求积分域的周长(2pi)【积分域是线,所以是周长,若是一整个圆,则积分结果是面积】
最后是因为原积分域的圆心不在原点,所以直接向左平移曲线C到原点(令x=x-1),这样积分域就关于x对称,也可以消去x的奇函数
解1(重点)
重点:因为积分区域里(0,0)里线积分不存在偏导,所以用不了格林公式。
那我们针对这种情况可以使用上面的方法,
利用该线积分....相等,给线积分换个范围,换成C,令分母为1就好做了
解2:
与方法1的区别是:在令分母为1后,剩下的xdy-ydx可以使用格林公式。
最后问题就转化为求曲线C(椭圆)的面积
解3:
还是求面积,但前面的思路是利用配方法或者线代里把二次型变成标准型的方法;求出C(椭圆)的a,d;就能用S=pi ab
解3的思路是长半轴是椭圆上离坐标原点距离最远的点;同理短半轴是距离最近的点
设椭圆上的点坐标(x,y),距离为,为了方便计算,直接平方变成
解4:
因为,以pi为周期,所以
易错点:1.,应当把函数分段
2.错认为最下边的式子都是=pi/2,最后一个式子得出
;
因为右边式子的在下限,所以
是从大于
的一端趋向
,这样导致
趋于负无穷(画个图会好理解),且
=
,所以最后是
易错点
使用拉格朗日不等式后会产生新的参数
它和x不是一个东西,使用洛必达求导的时候注意要把和x分开
必须要注意:
在无穷级数中,只有正项级数才能使用等价代换
只讨论A,因为A是交错级数;所以直接展开成会出错
这时候,只能使用泰勒展开,而且必须要展开到正负不变的那一项
解:
考虑到积分区间是0到2x,而x恰好是积分区间的中点;
所以考虑变量代换,创造对称区间,利用奇偶性
变上限积分求导公式:
或者也可以这样拆绝对值计算
这个积分是对t积分,在0-x区间对t积分,上限是x下限是0,t只在(0,x)内,可不就是t<x吗,在x-2x同理
变量代换法,令;
注意x趋于0时,趋于0,而
趋于1;
所以先让 先减1,在等价代换
总结:在极限中的变量代换,可以先看要代换的东西的极限是什么
而且注意,不要一次性等价代换太多比如:第一行的就不可以变成
;不然可能会损失精度
这里主要介绍一个小技巧:
在处理分母过于复杂而分子简单的时候,可以取它的倒数;
比如这里;这样后面处理就简单多了
当然是个1的无穷大,可以用解1的无穷大次方的方法来做,但这样就慢了
遇见形似于du(x,y)=P(x,y)dx+Q(x,y)dy;
就可以使用全微分公式:;
利用上述公式分别求偏导,就有下面:
之后得出:
这种时候可以使用偏积分或凑微分两种方式,这里使用凑微分:
就是把等号右边d前的参数全部放到d后边去;这里以ydx+(x+1)dy举例:
yd(x+1)+(x+1)dy=d((x+1)y)
最后凑完微分,去掉d,如下图
完整解题过程:
发现,联想[a,b]的n等分区间(要时刻注意这种把积分区间n等分的形式)
下面把变成
就是为了让式子形式统一(重点记一下这样转换积分的思路)
这里a,k,h都与积分变量x无关,所以函数f(xk)实际上是常数
这里(结合定积分的定义
)
这里利用拉格朗日定理和积分中值定理处理f(x)-f(xk)的思路可以记一下
解:
补充:定积分的定义:设函数f(x)在[a,b]上有界,插入分点分区间[a,b]为n个小区间
,长
,在各小区间任取
,作和
,记
为\
。若
时,
总趋于确定极限I,则称I为f(x)在[a,b]上的定积分,记
定义不重要,重要的是里的
里的
是小区间
里任取的
本题的小区间自然是,而且左端点是a,那么第一个小区间里的
可以是a+
,第二个小区间里的
可以是a+
所以本题的a+k就相当于
;结合定积分的定义
零散公式
一元积分里边的公式有时候多元积分也能用
这里;
令y-x=xsint;换元,就有
二重积分的“可爱因子”
补充:
算是把0到1分成n段。而
可以看作关于i的函数
(2i—1)/2n,这个i/n就是x,也就能看出当n→无穷时,只剩下了i/n,也就是x
那个变上限积分的上限2n分之2i-1是如何变成x的:通常用的是每个小矩形右端点的高度,然而这题用的是小矩形中点的高度,实际上我们可以用小矩形任意点的高度,减去的1/2n意思就是从右端点处再往左移动半个小矩形的宽度,这就是中点啦!
无穷级数判敛,出现这三个一般是比值法或者根值法,没有的话就是比较法或者比较法的极限形式
比如这道,就是用比较判敛法,答案为D 因为与
相除结果为常数
,所以同敛散性。
详细步骤在下面:
判断函数是否为周期函数,只需看在一个周期的积分上是否为0
如下面这个
则f(x)是以2pi为周期的周期函数
使用洛必达需要注意的问题:
注意箭头指向的等号
要这个等号相等,必须有f''(x)连续;
但是二阶导存在并不一定代表二阶导连续
再看多出来的这个箭头;
需要f'(x)-2/2x使用洛必达,就必须保证f''(x)存在(使用洛必达后极限存在)
但f''(x)存在不等于f''(x)存在
注意 :可导必连续针对的是f(x),不能用在f'(x),f''(x)这些上
用不了洛必达的时候可以考虑导数的定义