一、租用GPU
- http://xn--autodl-gh8iv9y6y3h首先进入官网http://xn--autodl-gh8iv9y6y3h,注册登录(如果是学生记得去验证,有优惠)
- 点击算力市场
- 选择合适的计量方式,地区和GPU型号,
(1)在选择地区时,一般选择距离自己最近的区,这样可以减少延迟,提高计算效率。
选择GPU
(2)在选择GPU时,需要考虑GPU对应的地区,一般选择距离自己最近的区,整体区别不大。另外,GPU型号的选择也很重要,对应不同的显卡核心,不同的GPU型号的收费价格不同,越好的GPU收费越贵,看个人经济实力选择。
- 选择镜像(注:30系列的卡需要配备cuda11以上的版本)
这里选择的是基础镜像
也可以选择Github上项目的社区镜像
- 租用成功后界面
二、配置环境
在这里我们首先选择无卡模式开机,顾名思义无卡模式开机即没有GPU有CPU开机(一般GPU被别人占满的时候,无卡模式还是依然能开机的),同时无卡模式只有0.1元/时,我们可以用它进行数据的传输和环境的配置,有卡模式就需要根据你所选择的配置进行收费,如选择的4090需要1.88元/时。
1、配置环境
(1)点击JupyterLab
(2)点击终端
- 输入:vim ~/.bashrc
- 点击i进入编辑模式
- 开始进行编辑:输入i
- 移动到文件的最后一行,加上source /root/miniconda3/etc/profile.d/conda.sh
- 按Esc键,输入:wq,再回车(:q是推出不保存:q!是强制退出)
- 输入bash后回车,即刷新一下
3)进入环境:conda activate base
创建新环境:conda create -n py38 python=3.8
进入新环境,输入:conda activate py38
(推出py37的代码示例:conda deactivate)
在这里就可以根据项目需要配置相应的深度学习框架,我认为有三种方案,
一是可以使用官网命令直接安装对应的包,如
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
但是我在安装过程中到最后总是被杀掉进程,所以在这里我使用的是第二种方法。
二是可以使用远程连接工具xftp传输文件到云主机上进行离线安装,xftp下载链接:http://xn--autodl-gh8iv9y6y3h
三是可以直接将需要安装的包下载的本地电脑,再上传到租用主机的网盘上
本文使用的是第二种方法,所以以下为第二种方法的具体步骤
1、点击更多,点击无卡模式开机或有卡模式开机后会在ssh登录出现ssh登录指令和密码
ssh登录指令格式如下
ssh -p 123456 root@xxxxxx.xxxx.com
- 用户名:root
- 主机HOST:xxxxxx.xxxx.com(即@后的所有内容)
- 端口号:123456
2、连接xftp
-
首先新建文件
-
名称可以随便起
-
主机为xxxxxx.xxxx.com(即@后的所有内容)
-
端口号为ssh -p 123456 root@xxxxxx.xxxx.com格式中的123456
-
密码
连接后左侧为你电脑本机,右侧是云主机,在右侧打开你想要存放文件的文件夹,双击左侧本机文件即可将文件上传到云主机的对应文件夹。
5、验证cuda是否可用 ***(到这里之前为了省钱都是无卡模式开机,为了验证环境是否配置成功需要先关机再开机,这次开机不要选择无卡模式了,需要根据你选择的配置进行按小时计费)***
进入notebook下的py38
import torchvision
import torch
print('你对应的torch的版本信息',torch.__version__)
print('返回true即为可用',torch.cuda.is_available())
# 1.12.0+cu113
# True