AutoDL租用云GPU运行YOLOv8目标检测算法,保姆式教程!

AutoDL是一个国内的GPU租用平台,AutoDL可以提供服务稳定、价格公道的GPU租用服务。更为学生提供免费升级会员通道,享极具性价比的会员价格。 并且操作简单,解决了本地深度学习任务中显卡性能不够用的问题。

本文详细介绍如何租用,和配置环境。

网址:https://www.autodl.com/home

一、首页

 二、租用

选择一个合适的GPU,租用

 在页面最下方可以选择镜像,自己配置,推荐使用PyTorch 2.0 + Python 3.8 + Cuda 11.8

点击立即创建即可。

等待创建完成。

可以看到正在运行中,不用的时候一定要关机。

 点开JupyterLab进入操作界面。

 点击终端进入命令行界面。

把自己的代码压缩包拖拽入文件夹里,这个文件夹可以直接从Github上拉下来。 耐心等待上传成功即可。

 解压压缩包。

unzip ultralytics-main.zip

解压完成。

 进入文件夹,初始化,输入以下代码:

cd ultralytics-main
conda init

关闭这个终端,再重新打开一个终端,就能成功进入base环境了。

  

再次输入cd ultralytics-main。

再输入学术资源加速。这个必须要有,不然下载文件非常慢。

source /etc/network_turbo

 再安装需求文档中的各个包。

pip install -r requirements.txt

 看到成功安装提示即可。

安装依赖


python setup.py install

 成功即可。

三、测试

测试一下YOLOv8是否能成功运行。

输入以下代码:


yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"

 运行成功!点开运行结果保存的位置,打开文件夹,查看结果:

 成功!

### 部署和运行 YOLOv8 的方法 要在 AutoDL 服务器上部署和运行 YOLOv8 模型,可以遵循以下指导: #### 1. 准备工作 确保已经注册并登录到 AutoDL 平台,并启动一台可用的 GPU 实例。如果需要上传自定义数据集,则可以通过 Xshell 和 Xftp 工具完成文件传输操作[^2]。 #### 2. 安装依赖项 进入 JupyterLab 或者通过 SSH 连接到实例后,在终端执行如下命令来创建一个新的虚拟环境以及安装必要的库: ```bash conda create -n yolov8 python=3.9 source activate yolov8 pip install ultralytics ``` 这里 `ultralytics` 是官方支持 YOLOv8 的 Python 库[^4]。 #### 3. 下载预训练权重或者微调模型 对于使用预训练好的权重文件可以直接从 Ultralytics 提供链接获取;如果是继续之前保存下来的 checkpoint 则需将其传至端存储路径下。 ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载官方发布的轻量级网络结构 'yolo v8 nano' results = model.train(data='path/to/dataset.yaml', epochs=100, imgsz=640) ``` 上述脚本展示了如何加载默认参数设置下的小型版 YOLOV8 架构并对指定的数据集进行训练过程[^5]。 #### 4. 数据准备 参照官方文档编写对应格式的数据描述 YAML 文件,该文件应包含类别名称列表、图片位置信息等内容。假设我们有一个本地目录 `/content/data/images/train/` 存放训练图像集合,则可构建类似的配置样例如下所示: ```yaml train: /content/data/images/train/ val: /content/data/images/valid/ names: 0: bird 1: cat ``` 注意替换实际存在的绝对地址以匹配项目需求[^6]。 #### 5. 开始训练或推理任务 最后一步就是提交作业给调度器处理啦!无论是单次预测还是批量评估都可以轻松搞定哦~记得调整超参让效果更佳哟~ --- ###
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥兜兜有糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值