AutoDL是一个国内的GPU租用平台,AutoDL可以提供服务稳定、价格公道的GPU租用服务。更为学生提供免费升级会员通道,享极具性价比的会员价格。 并且操作简单,解决了本地深度学习任务中显卡性能不够用的问题。
本文详细介绍如何租用,和配置环境。
网址:https://www.autodl.com/home
一、首页

二、租用
选择一个合适的GPU,租用

在页面最下方可以选择镜像,自己配置,推荐使用PyTorch 2.0 + Python 3.8 + Cuda 11.8

点击立即创建即可。
等待创建完成。

可以看到正在运行中,不用的时候一定要关机。
点开JupyterLab进入操作界面。

点击终端进入命令行界面。

把自己的代码压缩包拖拽入文件夹里,这个文件夹可以直接从Github上拉下来。 耐心等待上传成功即可。

解压压缩包。
unzip ultralytics-main.zip
解压完成。

进入文件夹,初始化,输入以下代码:
cd ultralytics-main
conda init
关闭这个终端,再重新打开一个终端,就能成功进入base环境了。
再次输入cd ultralytics-main。
再输入学术资源加速。这个必须要有,不然下载文件非常慢。
source /etc/network_turbo
再安装需求文档中的各个包。
pip install -r requirements.txt

看到成功安装提示即可。

安装依赖
python setup.py install
成功即可。
三、测试
测试一下YOLOv8是否能成功运行。
输入以下代码:
yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"

运行成功!点开运行结果保存的位置,打开文件夹,查看结果:

成功!

2289

被折叠的 条评论
为什么被折叠?



