Opencv图像轮廓检测——转换灰度图像、二值图像、绘制图像轮廓、轮廓特征、轮廓外接圆

引言

边缘是零零散散的,轮廓是一个整体。

一、准备工作

1.读取图像

2.转灰度图像

3.转换二值图像

import cv2
img=cv2.imread("C:/Users/bwy/Desktop/4.jpg",cv2.IMREAD_GRAYSCALE)
ret,thresh=cv2.threshold(img,127,255,cv2.THRESH_BINARY)#图像转换成二值图像

二、图像轮廓

函数为:cv2.findContours(img,mode,method)

参数解读:

img:显而易见了就是图像

mode:轮廓检索模式

RETR_EXTERNAL:只检索最外面的轮廓

RETR_LIST:检索所有的轮廓,并保存到另一条链表中

RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界

RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次

method:轮廓逼近方法

CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)

CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分

contours,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)

 返回值:

contours:列表,保存轮廓信息。

np.array(contours).shape

结果:

 hierarchy:数组,分层保存轮廓信息

三、绘制图像轮廓

注意:cv2.drawContours(img, contours, contourIdx, color, thickness):

参数说明:

图像要拷贝,不然会在原图像进行操作。

contours:轮廓信息

-1:代表所以有轮廓

(0,0,255):代表用红色线绘制轮廓(B,G,R),还可以进行颜色的更改

1:代表绘制轮廓线的宽度

draw_img=im.copy()
res=cv2.drawContours(draw_img,contours,-1,(0,0,255),1)
cv_show('res',res)

结果如图所示:

 四、轮廓特征

4.1、轮廓计算

在计算时,不能将轮廓全部放进去计算,计算时需要选出其中一个。下面使用轮廓信息中的第0个轮廓计算它的面积和周长。

# 获取某一个轮廓用于计算
cnt = contours[0]
# ==1== 面积
cv2.contourArea(cnt)  # 8500.5
# ==2== 周长
cv2.arcLength(cnt,True)  # 437.948

4.2轮廓近似

以直线代表曲线,曲线上的两个点构成的直线,曲线上任意找一点到直线的距离最远并且小于阈值就满足以曲代直,否则继续划分。

img1 = cv2.imread("C:/Users/bwy/Desktop/5.png")  # 获取一张图像
gray = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)  # 灰度图
ret,thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 二值化
cv_show('thresh',thresh)

结果:

contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)  # 轮廓提取
cnt=contours[0]
draw = img1.copy()  # 绘制轮廓
res = cv2.drawContours(draw, [cnt], -1, (0,0,255), 4)  # 在draw图像中绘制cnt轮廓
cv_show('res',res)  # 绘图
epsilon = 0.01*cv2.arcLength(cnt,True)  # 以周长的百分比作为阈值,指定的越小,得到的轮廓和原来的区别较小
approx = cv2.approxPolyDP(cnt, epsilon, True)  # 近似函数,cnt为轮廓,epsilon阈值。返回近似后的轮廓
draw_image = img1.copy()
res = cv2.drawContours(draw_image,[approx] , -1, (0,255,0),6)  # 将近似后的轮廓approx画在原图上,用蓝色表示,线条粗2
cv_show('res',res)

结果如图所示:

五、轮廓外接圆

# 轮廓外接圆
# 返回圆心坐标和半径
(x,y),radius = cv2.minEnclosingCircle(cnt)
# 圆心坐标
center = (int(x),int(y))
# 半径
radius = int(radius)
# 绘制外接圆,输入整型
circle = cv2.circle(img1,center,radius,(255,0,0),2)
cv_show('circle',circle)

 结果如图所示:

  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
您好!感谢您的提问。要截取最大轮廓图像,您可以使用以下步骤: 1. 读取图像并进行灰度转换。 2. 进行图像的二化处理,得到一个二图像。 3. 使用 findContours 函数查找所有轮廓。 4. 使用 minEnclosingCircle 函数得到每个轮廓外接圆半径。 5. 找到最大的半径,即最大的轮廓。 6. 使用 drawContours 函数将最大的轮廓绘制在一个新的图像上。 代码如下: ``` using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using OpenCvSharp; namespace OpenCVSharpDemo { class Program { static void Main(string[] args) { // 读取图像并进行灰度转换 Mat src = Cv2.ImRead("test.png", ImreadModes.GrayScale); // 进行图像的二化处理,得到一个二图像 Mat binary = new Mat(); Cv2.Threshold(src, binary, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu); // 使用 findContours 函数查找所有轮廓 List<Point[]> contours = new List<Point[]>(); Mat hierarchy = new Mat(); Cv2.FindContours(binary, out contours, hierarchy, RetrievalModes.List, ContourApproximationModes.ApproxNone); // 使用 minEnclosingCircle 函数得到每个轮廓外接圆半径 List<float> radiuses = new List<float>(); foreach (Point[] contour in contours) { Point2f center; float radius; Cv2.MinEnclosingCircle(contour, out center, out radius); radiuses.Add(radius); } // 找到最大的半径,即最大的轮廓 int index = radiuses.IndexOf(radiuses.Max()); Point[] maxContour = contours[index]; // 使用 drawContours 函数将最大的轮廓绘制在一个新的图像上 Mat result = src.Clone(); Cv2.DrawContours(result, new Point[][] { maxContour }, 0, Scalar.Red, 2); // 显示结果 Cv2.ImShow("Result", result); Cv2.WaitKey(0); Cv2.DestroyAllWindows(); } } } ``` 希望这个方法能够解决您的问题。如果您还有其他问题,欢迎继续提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值