题目
您需要写一种数据结构,来维护一些数(都是绝对值以内的数)的集合,最开始时集合是空的。其中需要提供以下操作,操作次数q不超过
:
- 定义数x的排名为集合中小于x的数的个数+1。查询数x的排名。注意x不一定在集合里。
- 查询排名为x(x≥1) 的数。保证集合里至少有x个数。
- 求x的前驱(前驱定义为小于x,且最大的数)。若不存在则输出−2147483647。
- 求x的后继(后继定义为大于x,且最小的数)。若不存在则输出2147483647。
- 插入一个数x,本题的数据保证插入前x不在集合中。
保证执行1,3,4操作时,集合中有至少一个元素。
输入输出格式
输入格式
第一行是一个整数q,表示操作次数。
接下来q行,每行两个整数op,x,分别表示操作序号以及操作的参数x。
输出格式
输出有若干行。对于操作1,2,3,4,输出一个整数,表示该操作的结果。
输入输出样例
输入样例
7
5 1
5 3
5 5
1 3
2 2
3 3
4 3
输出样例
2
3
1
5
解析1
BST,二叉搜索树,又叫二叉排序树,是一棵空树或具有以下几种性质的树:
-
若左子树不空,则左子树上所有结点的值均小于它的根结点的值
-
若右子树不空,则右子树上所有结点的值均大于它的根结点的值
-
左、右子树也分别为二叉排序树
-
没有权值相等的结点。
第4条在数据中遇到多个相等的数我们可以多加一个计数器,就是当前这个值出现了几遍。
那么我们的每一个节点都包含以下几个信息:
-
当前节点的权值,也就是序列里的数
-
左孩子的下标和右孩子的下标,如果没有则为0
-
计数器,代表当前的值出现了几遍
-
子树大小和自己的大小的和
节点是这样的:
struct node{
int val,ls,rs,cnt,siz;
}tree[500010];
其中val是权值,ls /rs是左/右孩子的下标,cnt是当前的权值出现了几次,siz 是子树大小和自己的大小的和。
以下均以递归方式呈现。
插入:
x是当前节点的下标,v是要插入的值。要在树上插入一个v的值,就要找到一个合适v的位置,如果本身树的节点内有代表v的值的节点,就把该节点的计数器加1 ,否则一直向下寻找,直到找到叶子节点,这个时候就可以从这个叶子节点连出一个儿子,代表v的节点。具体向下寻找该走左儿子还是右儿子是根据二叉搜索树的性质来的。
void add(int x,int v)
{
tree[x].siz++;
//如果查到这个节点,说明这个节点的子树里面肯定是有v的,所以siz++
i