题目
小K喜欢翻看洛谷博客获取知识。每篇文章可能会有若干个(也有可能没有)参考文献的链接指向别的博客文章。小K求知欲旺盛,如果他看了某篇文章,那么他一定会去看这篇文章的参考文献(如果他之前已经看过这篇参考文献的话就不用再看它了)。
假设洛谷博客里面一共有n(n≤)篇文章(编号为1到n)以及m(m≤) 条参考文献引用关系。目前小K已经打开了编号为1的一篇文章,请帮助小K设计一种方法,使小K可以不重复、不遗漏的看完所有他能看到的文章。
这边是已经整理好的参考文献关系图,其中,文献X → Y表示文章X有参考文献Y。不保证编号为1的文章没有被其他文章引用。
请对这个图分别进行DFS和BFS,并输出遍历结果。如果有很多篇文章可以参阅,请先看编号较小的那篇(因此你可能需要先排序)。
输入输出格式
输入格式
共m+1行,第1行为2个数,n和m,分别表示一共有n(n≤) 篇文章(编号为1到n)以及m(m≤) 条参考文献引用关系。
接下来m行,每行有两个整数X,Y表示文章X有参考文献Y。
输出格式
共2行。 第一行为DFS遍历结果,第二行为BFS遍历结果。
输入输出样例
输入样例
8 9
1 2
1 3
1 4
2 5
2 6
3 7
4 7
4 8
7 8
输出样例
1 2 5 6 3 7 8 4
1 2 3 4 5 6 7 8
解析
题目大意可以概括一下:有一张有向图,求其进行深度优先搜索(DFS)和广度优先搜索(BFS)的两个字典序最小的遍历序列。
DFS,用通俗的话来说,就是你从图的一个结点出发,选择了下一个你需要遍历的结点,然后你再以你所选择的点作为新的起点,继续向下选择,直到你选择的结点没有了下一个结点,或者它所有的子节点都被访问过。
那你就要按照你选择的路径,依次跳回,直到你跳回的节点有了字节点,再进行遍历,以此类推。
BFS,用通俗的话来说,就是你从图中的一个节点出发,其有几个子节点,你会先将这所有的子节点遍历,再挑其中的一个子节点,遍历它的所有子节点,再换到另外一个结点遍历其所有的子节点。这样一层层遍历,以此类推。
对于DFS,由于它需要往回跳,所以就需要用递归算法;
对于BFS,由于它需要一层层遍历,所以需要用一个数据结构来存储每一层的节点,而根据我所描述的,选用队列(queue)是最为合适的。
对了,这道题节点数≤,使用邻接矩阵会MLE,那么就只能考虑采用邻接表。
又由于本题需要求字典序最小的序列,那么就要将邻接表存储的结点按从小到大进行排序。
总体就是这样的,记得两次遍历中间要清空你遍历时所需要的标记数组。
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100010;
vector<int>G[maxn];
queue<int>q;
int n,m;
bool vis[maxn];
void dfs(int x,int cur){
vis[x]=true;
cout<<x<<" ";
if(cur==n){
return;
}
for(int i=0;i<G[x].size();i++){
if(!vis[G[x][i]]){
dfs(G[x][i],cur+1);
}
}
}
void bfs(int x){
memset(vis,false,sizeof(vis));
vis[x]=true;
q.push(x);
while(!q.empty()){
int v=q.front();
q.pop();
cout<<v<<" ";
for(int i=0;i<G[v].size();i++){
if(!vis[G[v][i]]){
vis[G[v][i]]=true;
q.push(G[v][i]);
}
}
}
}
int main(){
cin>>n>>m;
for(int i=1;i<=m;i++){
int u,v;
cin>>u>>v;
G[u].push_back(v);
}
for(int i=1;i<=n;i++){
sort(G[i].begin(),G[i].end());
}
dfs(1,0);
cout<<endl;
bfs(1);
return 0;
}