使用Scipy优化梯度下降问题

目    录

问题重述

附加问题

步骤实施

1.查看Scipy官网SciPy,找到优化有关的模块(Optimize)

2.研究多种优化策略,选择最符合代码的方案进行优化

3.minimize函数参数及其返回值

4.代码展示

5.结果展示

6.进一步优化

6.1对如下函数方法进行优化

6.2基准测试

6.3 发现

测试文件附录

任务清单


问题重述

在二维平面有n个点,如何画一条直线,使得所有点到该直线距离之和最短

如果能找到,请给出其损失函数

附加问题

1.使用Scipy优化上述问题

2.主代码中不得出现任何循环语法,出现一个扣10分

步骤实施

1.查看Scipy官网SciPy,找到优化有关的模块(Optimize)

2.研究多种优化策略,选择最符合代码的方案进行优化

优化方法
名称特点应用场景
Scalar Functions Optimization用于最小化或最大化单个标量函数的,通常用于解决一维问题目标函数只返回一个标量(单个值)
Local (Multivariate) Optimization适用于多变量问题,需要梯度函数,不过会自动寻找梯度更新目标值在参数空间中找到局部最小值或最大值
Global Optimization寻找函数的全局最小值或最大值,包含多个局部最值在计算条件允许的条件下可以得到全局最优解

优化方法
序号名称使用方法适用条件
1Nelder-MeadNelder-Mead单纯形法适用于一般的非线性问题
2PowellPowell方法适合多维非约束优化的方法
3CG共轭梯度法(Conjugate Gradient)适用于二次优化问题或大规模问题
4BFGS拟牛顿BFGS算法适用于大多数非线性优化问题的常用方法,尤其是当梯度信息可用时
5Newton-CG牛顿共轭梯度法适用于大多数非线性优化问题,但相对于BFGS需要更多的内存
6L-BFGS-B限制内存BFGS算法适用于大规模问题,因为它限制了内存使用
7TNC截断牛顿法适用于大多数非线性优化问题,并且能够处理约束条件
8COBYLA约束优化适用于具有约束条件的问题
9SLSQP顺序最小二乘法适用于具有约束条件的问题,并且能够处理线性和非线性约束
10trust-constr信任区域约束优化方法适用于有约束条件的问题,并且可以处理线性和非线性约束
11dogleg信任域Dogleg方法适用于具有约束条件的问题
12trust-ncg信任区域牛顿共轭梯度法适用于约束优化问题
13trust-krylov信任区域Krylov子空间法适用于约束优化问题
14trust-exact精确信任区域方法适用于约束优化问题

 此问题我们需要求最小值,所以我们采用minimize函数,并选择常用的BFGS策略

3.minimize函数参数及其返回值

原型如下:

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

挑五个主要的参数讲

1.fun:需要最小化的目标函数

这个函数应该接受一个输入向量,返回一个标量(单个值),表示损失函数的值。

2.x0:起始参数的初始猜测值

通常是一个数组或列表,表示参数的初始估计。

3.args:传递给目标函数的额外参数的元组

如果目标函数需要额外的参数,可以将它们作为元组传递给args参数。

4.method:选择优化方法的字符串

这是一个可选参数,如果未指定,默认使用'Nelder-Mead'方法。可以选择其他方法,

5.jac:表示目标函数的梯度(导数)的函数

如果提供了梯度函数,通常可以加速优化过程。如果不提供,优化算法会尝试数值估计梯度。

所以我们在优化代码的时候,

可以将 calcLoseFunction函数作为fun,

而k,b两个参数打成列表作为x0,

将XData,YData组成元组传递给arg

method选择BFGS

最后jac选择不写,便于对比两者速度差异

其返回值说明如下

1.x:优化的参数值。这是一个数组,包含找到的最优参数。

2.fun:最小化目标函数的最小值(损失函数的最小值)。

3.success:一个布尔值,表示优化是否成功收敛到最小值。

4.message:一个字符串,描述优化的终止消息。

5.nit:迭代次数,表示优化算法运行的迭代次数。

6.nfev:函数调用次数,表示评估目标函数的次数。

7.njev:梯度计算次数,表示计算目标函数梯度的次数(如果提供了梯度函数)。

8.hess_inv:Hessian矩阵的逆矩阵(如果提供了Hessian信息)。

9.jac:目标函数的梯度值。

4.代码展示

import numpy #发现直接用List就行了
import random
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from commonTools import *
# random.random()
# random.randint(start,stop)
#################全局数据定义区
# 数组大小
listSize=10
# 定义学习率 取尽量小0.001
learningRate=0.0001
#定义初始直线的 斜率k 和 截距b 45° 1单位距离
# 现在设置 k=0.5 检验程序
k,b=0.5,1
initialParams=[k,b]
#定义迭代次数
bfsNums=9999
#################全局数据定义区END
# 生成随机数
def generateRandomInteger(start, end):
    # [1-100]
    return random.randint(start, end)

# 打印本次随机生成的X,Y 便于快速粘贴复现
def printXYArray(XData,YData):
    # 打印X
    print("[", ",".join([str(i) for i in XData]), "]")
    # 打印Y
    print("[", ",".join([str(i) for i in YData]), "]")

#调用公共模块进行打印 便于快速查看粘贴
def printXYData(XData,YData):
    loc=locals()
    printArray(XData,loc)
    printArray(YData,loc)
# 最小二乘法定义损失函数 并计算
#参考链接:https://blog.csdn.net/zy_505775013/article/details/88683460
# 求最小二乘法的最小值 最终结果应当是在learningRate一定情况下  这个最小的sum
def calcLoseFunction(params,XData,YData):
    k, b = params
    sum=0
    for i in range(0,listSize):
        # 使用偏离值的平方进行累和
        sum+=(YData[i]-(k*XData[i]+b))**2
    return sum

#梯度下降法
def calcGradientCorrection(b, k, XData, YData, learningRate, bfsNums):
    for i in range(0, bfsNums):
        sumk, sumb = 0, 0
        for j in range(0, listSize):
            # 定义预测值Y'
            normalNum = k * XData[j] + b
            # 计算逆梯度累和
            sumk += -(2 / listSize) * (normalNum - YData[j]) * XData[j]
            sumb += -(2 / listSize) * (normalNum - YData[j])
        # 在逆梯度的方向上进行下一步搜索
        k += learningRate * sumk
        b += learningRate * sumb
    return k, b

# 随机生成横坐标
XData=[generateRandomInteger(1,100) for i in range(listSize) ]
# 随机生成纵坐标
YData=[XData[i]+generateRandomInteger(-10,10) for i in range(listSize) ]
# 纯随机生成 但是可视化效果不直观
# YData=[generateRandomInteger(1,100) for i in range(listSize) ]
# 死值替换区
# XData=testArrayX
# YData=testArrayY

print("初始选取k={},b={}的情况下的损失函数值为sum={}".format(k,b,calcLoseFunction(initialParams,XData,YData)))
# 对k,b进行梯度修正
# k,b=calcGradientCorrection(b,k,XData,YData,learningRate,bfsNums)
#使用Scipy进行求解
result = minimize(calcLoseFunction, initialParams, args=(XData, YData), method='BFGS')
resultk,resultb=result.x
print("修正后:k={},b={},最小损失sum={},最小二乘法损失sums={}".format(resultk,resultb,result.fun,calcLoseFunction([resultk,resultb],XData,YData)))
print("调试数组")
printXYArray(XData,YData)

#画图
plt.plot(XData, YData, 'b.')
plt.plot(XData, resultk*numpy.array(XData)+resultb, 'r')
plt.show()
print("END")

5.结果展示

6.进一步优化

两个目标

1.优化损失函数中的for循环

2.对使用Scipy优化前后的代码进行基准测试,比较运行速度

6.1对如下函数方法进行优化
def calcLoseFunction(params,XData,YData):
    k, b = params
    sum=0
    for i in range(0,listSize):
        # 使用偏离值的平方进行累和
        sum+=(YData[i]-(k*XData[i]+b))**2
    return sum

使用numpy,优化后如下:

def calcLoseFunction(params,XData,YData):
    XData,YData=np.array(XData),np.array(YData)
    k, b = params
    sum=np.sum((YData - (k * XData + b))**2)
    return sum

无for优化后代码如下:

import numpy as np
import random
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from commonTools import *

#################全局数据定义区
# 数组大小
listSize=10
#定义初始直线的 斜率k 和 截距b 45° 1单位距离
# 现在设置 k=0.5 检验程序
k,b=0.5,1
initialParams=[k,b]
#################全局数据定义区END
# 生成随机数
def generateRandomInteger(start, end):
    return random.randint(start, end)

#调用公共模块进行打印 便于快速查看粘贴
def printXYData(XData,YData):
    loc=locals()
    printArray(XData,loc)
    printArray(YData,loc)

# 最小二乘法定义损失函数 并计算
def calcLoseFunction(params,XData,YData):
    XData,YData=np.array(XData),np.array(YData)
    k, b = params
    sum=np.sum((YData - (k * XData + b))**2)
    return sum

# 随机生成横坐标
XData=[generateRandomInteger(1,100) for i in range(listSize) ]
# 随机生成纵坐标
YData=[XData[i]+generateRandomInteger(-10,10) for i in range(listSize) ]
# 纯随机生成 但是可视化效果不直观
# YData=[generateRandomInteger(1,100) for i in range(listSize) ]
# 死值替换区
# XData=[ 49,74,62,54,20,14,27,74,23,50 ]
# YData=[ 47,65,56,57,21,21,32,81,27,46 ]

print("初始选取k={},b={}的情况下的损失函数值为sum={}".format(k,b,calcLoseFunction(initialParams,XData,YData)))

#使用Scipy进行求解
result = minimize(calcLoseFunction, initialParams, args=(XData, YData), method='BFGS')
resultk,resultb=result.x
print("修正后:k={},b={},最小损失sum={},最小二乘法损失sums={}".format(resultk,resultb,result.fun,calcLoseFunction([resultk,resultb],XData,YData)))
print("调试数组")
printXYData(XData,YData)

#画图
plt.plot(XData, YData, 'b.')
plt.plot(XData, resultk*np.array(XData)+resultb, 'r')
plt.show()
print("END")

其中公共模块commonTools.py 代码如下:

#########导包区

#########说明
#1.想要在公共模块区域使用变量列表 必须传进来 因为彼此的变量作用域不同


#########公共变量定义区
#这个locals应该是被引入的界面传进来,而不是从这拿
# loc=locals()

#########函数书写区
#1.获取变量名称
def getVariableName(variable,loc):
    for k,v in loc.items():
        if loc[k] is variable:
            return k

#附带的打印变量名
def printValue(object,loc):
    print("变量{}的值是{}".format(getVariableName(object,loc),object))

# 2.组装列表为字符串
def mergeInSign(dataList,sign):
    # print(str(sign).join([str(i) for i in dataList]))
    return str(sign).join([str(i) for i in dataList])

# 3.打印一个列表
def printArray(dataArray,loc):
    print("列表{}的内容是:".format(getVariableName(dataArray,loc)),\
          "[", ",".join([str(i) for i in dataArray]), "]"\
          )

原先的代码如下:

import numpy #发现直接用List就行了
import random
import matplotlib.pyplot as plt
# random.random()
# random.randint(start,stop)
#################全局数据定义区
# 数组大小
listSize=10
# 定义学习率 取尽量小0.001
learningRate=0.0001
#定义初始直线的 斜率k 和 截距b 45° 1单位距离
# 现在设置 k=0.5 检验程序
k,b=0.5,1
#定义迭代次数
bfsNums=9999
#################全局数据定义区END
# 生成随机数
def generateRandomInteger(start, end):
    # [1-100]
    return random.randint(start, end)
 
# 打印本次随机生成的X,Y 便于快速粘贴复现
def printXYArray(XData,YData):
    # 打印X
    print("[", ",".join([str(i) for i in XData]), "]")
    # 打印Y
    print("[", ",".join([str(i) for i in YData]), "]")
 
# 最小二乘法定义损失函数 并计算
#参考链接:https://blog.csdn.net/zy_505775013/article/details/88683460
# 求最小二乘法的最小值 最终结果应当是在learningRate一定情况下  这个最小的sum
def calcLoseFunction(k,b,XData,YData):
    sum=0
    for i in range(0,listSize):
        # 使用偏离值的平方进行累和
        sum+=(YData[i]-(k*XData[i]+b))**2
    return sum
 
#梯度下降法
def calcGradientCorrection(b, k, XData, YData, learningRate, bfsNums):
    for i in range(0, bfsNums):
        sumk, sumb = 0, 0
        for j in range(0, listSize):
            # 定义预测值Y'
            normalNum = k * XData[j] + b
            # 计算逆梯度累和  注意这里求偏导应当是两倍 不知道为什么写成1了
            # 求MSE的偏导
            sumk += -(2 / listSize) * (normalNum - YData[j]) * XData[j]
            sumb += -(2 / listSize) * (normalNum - YData[j])
        # 在逆梯度的方向上进行下一步搜索
        k += learningRate * sumk
        b += learningRate * sumb
    return k, b
 
# 随机生成横坐标
XData=[generateRandomInteger(1,100) for i in range(listSize) ]
# 随机生成纵坐标
YData=[XData[i]+generateRandomInteger(-10,10) for i in range(listSize) ]
# 纯随机生成 但是可视化效果不直观
# YData=[generateRandomInteger(1,100) for i in range(listSize) ]
# 死值替换区
# XData=testArrayX
# YData=testArrayY
 
print("初始选取k={},b={}的情况下的损失函数值为sum={}".format(k,b,calcLoseFunction(k,b,XData,YData)))
# 对k,b进行梯度修正
k,b=calcGradientCorrection(b,k,XData,YData,learningRate,bfsNums)
print("修正后:k={},b={},最小损失sum={}".format(k,b,calcLoseFunction(k,b, XData, YData)))
print("调试数组")
printXYArray(XData,YData)
 
#画图
plt.plot(XData, YData, 'b.')
plt.plot(XData, k*numpy.array(XData)+b, 'r')
plt.show()
print("END")

 到此,使用scipy并对for循环进行优化已经完成,下面我们使用程序对比优化后时间效率上有没有改进。

6.2基准测试

我们将先后代码的画图部分都注释

目录结构如下:

 test.py代码如下:

import os       #执行调用
import time     #记录时间
DEBUG=False
execFileName="old.py" if DEBUG else "new.py"

if __name__=="__main__":
    startTime = time.time()
    os.system("python {}".format(execFileName))
    endTime = time.time()
    print("文件:{}执行耗时:{}ms".format(execFileName,endTime-startTime))

DEBUG为False

DEBUG为True

额,调用minimize函数在时间上不如自己写的梯度下降。。。。。

多次随机测试后发现结果依旧如此,可能是因为scipy引入了其他策略,导致了执行时间变长

6.3 发现

使用scipy在某种程度上可能能优化执行效率,但是在部分情况下可能耗时会略长于基本实现

测试文件附录

commonTools.py

#########导包区

#########说明
#1.想要在公共模块区域使用变量列表 必须传进来 因为彼此的变量作用域不同


#########公共变量定义区
#这个locals应该是被引入的界面传进来,而不是从这拿
# loc=locals()

#########函数书写区
#1.获取变量名称
def getVariableName(variable,loc):
    for k,v in loc.items():
        if loc[k] is variable:
            return k

#附带的打印变量名
def printValue(object,loc):
    print("变量{}的值是{}".format(getVariableName(object,loc),object))

# 2.组装列表为字符串
def mergeInSign(dataList,sign):
    # print(str(sign).join([str(i) for i in dataList]))
    return str(sign).join([str(i) for i in dataList])

# 3.打印一个列表
def printArray(dataArray,loc):
    print("列表{}的内容是:".format(getVariableName(dataArray,loc)),\
          "[", ",".join([str(i) for i in dataArray]), "]"\
          )

test.py

import os       #执行调用
import time     #记录时间
DEBUG=True
execFileName="old.py" if DEBUG else "new.py"

if __name__=="__main__":
    startTime = time.time()
    os.system("python {}".format(execFileName))
    endTime = time.time()
    print("文件:{}执行耗时:{}ms".format(execFileName,endTime-startTime))

new.py

import numpy as np
import random
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from commonTools import *

#################全局数据定义区
# 数组大小
listSize=10
#定义初始直线的 斜率k 和 截距b 45° 1单位距离
# 现在设置 k=0.5 检验程序
k,b=0.5,1
initialParams=[k,b]
#################全局数据定义区END
# 生成随机数
def generateRandomInteger(start, end):
    return random.randint(start, end)

#调用公共模块进行打印 便于快速查看粘贴
def printXYData(XData,YData):
    loc=locals()
    printArray(XData,loc)
    printArray(YData,loc)

# 最小二乘法定义损失函数 并计算
def calcLoseFunction(params,XData,YData):
    XData,YData=np.array(XData),np.array(YData)
    k, b = params
    sum=np.sum((YData - (k * XData + b))**2)
    return sum

# # 随机生成横坐标
# XData=[generateRandomInteger(1,100) for i in range(listSize) ]
# # 随机生成纵坐标
# YData=[XData[i]+generateRandomInteger(-10,10) for i in range(listSize) ]
# 纯随机生成 但是可视化效果不直观
# YData=[generateRandomInteger(1,100) for i in range(listSize) ]
# 死值替换区
XData=[ 49,74,62,54,20,14,27,74,23,50 ]
YData=[ 47,65,56,57,21,21,32,81,27,46 ]

print("初始选取k={},b={}的情况下的损失函数值为sum={}".format(k,b,calcLoseFunction(initialParams,XData,YData)))

#使用Scipy进行求解
result = minimize(calcLoseFunction, initialParams, args=(XData, YData), method='BFGS')
resultk,resultb=result.x
print("修正后:k={},b={},最小损失sum={},最小二乘法损失sums={}".format(resultk,resultb,result.fun,calcLoseFunction([resultk,resultb],XData,YData)))
print("调试数组")
printXYData(XData,YData)

#画图
# plt.plot(XData, YData, 'b.')
# plt.plot(XData, resultk*np.array(XData)+resultb, 'r')
# plt.show()
print("END")

old.py 

import numpy  # 发现直接用List就行了
import random
import matplotlib.pyplot as plt
from commonTools import *
# random.random()
# random.randint(start,stop)
#################全局数据定义区
# 数组大小
listSize = 10
# 定义学习率 取尽量小0.001
learningRate = 0.0001
# 定义初始直线的 斜率k 和 截距b 45° 1单位距离
# 现在设置 k=0.5 检验程序
k, b = 0.5, 1
# 定义迭代次数
bfsNums = 9999


#################全局数据定义区END
# 生成随机数
def generateRandomInteger(start, end):
    # [1-100]
    return random.randint(start, end)

# 打印本次随机生成的X,Y 便于快速粘贴复现
def printXYArray(XData, YData):
    # 打印X
    print("[", ",".join([str(i) for i in XData]), "]")
    # 打印Y
    print("[", ",".join([str(i) for i in YData]), "]")


# 最小二乘法定义损失函数 并计算
# 参考链接:https://blog.csdn.net/zy_505775013/article/details/88683460
# 求最小二乘法的最小值 最终结果应当是在learningRate一定情况下  这个最小的sum
def calcLoseFunction(k, b, XData, YData):
    sum = 0
    for i in range(0, listSize):
        # 使用偏离值的平方进行累和
        sum += (YData[i] - (k * XData[i] + b)) ** 2
    return sum


# 梯度下降法
def calcGradientCorrection(b, k, XData, YData, learningRate, bfsNums):
    for i in range(0, bfsNums):
        sumk, sumb = 0, 0
        for j in range(0, listSize):
            # 定义预测值Y'
            normalNum = k * XData[j] + b
            # 计算逆梯度累和  注意这里求偏导应当是两倍 不知道为什么写成1了
            # 求MSE的偏导
            sumk += -(2 / listSize) * (normalNum - YData[j]) * XData[j]
            sumb += -(2 / listSize) * (normalNum - YData[j])
        # 在逆梯度的方向上进行下一步搜索
        k += learningRate * sumk
        b += learningRate * sumb
    return k, b


# 随机生成横坐标
XData = [generateRandomInteger(1, 100) for i in range(listSize)]
# 随机生成纵坐标
YData = [XData[i] + generateRandomInteger(-10, 10) for i in range(listSize)]
# 纯随机生成 但是可视化效果不直观
# YData=[generateRandomInteger(1,100) for i in range(listSize) ]
# 死值替换区
# XData=[ 49,74,62,54,20,14,27,74,23,50 ]
# YData=[ 47,65,56,57,21,21,32,81,27,46 ]

print("初始选取k={},b={}的情况下的损失函数值为sum={}".format(k, b, calcLoseFunction(k, b, XData, YData)))
# 对k,b进行梯度修正
k, b = calcGradientCorrection(b, k, XData, YData, learningRate, bfsNums)
print("修正后:k={},b={},最小损失sum={}".format(k, b, calcLoseFunction(k, b, XData, YData)))
print("调试数组")
printXYArray(XData, YData)

# 画图
# plt.plot(XData, YData, 'b.')
# plt.plot(XData, k * numpy.array(XData) + b, 'r')
# plt.show()
print("END")

任务清单

1.算法程序不使用任何for循环(已完成)

2.使用scipy对原先的代码进行优化(已完成)

3.对优化前后代码进行基准测试(已完成)

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
使用NumPy实现梯度下降,首先需要定义一个损失函数和其对参数的梯度。然后,可以使用循环迭代的方式更新参数,直到达到收敛条件为止。 以下是一个使用NumPy实现梯度下降的示例代码: ```python import numpy as np # 定义损失函数 def loss_function(X, y, theta): m = len(y) h = X.dot(theta) return np.sum((h - y) ** 2) / (2 * m) # 定义梯度函数 def gradient(X, y, theta): m = len(y) h = X.dot(theta) return X.T.dot(h - y) / m # 定义梯度下降函数 def gradient_descent(X, y, theta, learning_rate, iterations): m = len(y) loss_history = [] for i in range(iterations): grad = gradient(X, y, theta) theta = theta - learning_rate * grad loss = loss_function(X, y, theta) loss_history.append(loss) return theta, loss_history # 生成随机数据 np.random.seed(0) X = 2 * np.random.rand(100, 1) y = 4 + 3 * X + np.random.randn(100, 1) # 添加偏置项 X_b = np.c_[np.ones((100, 1)), X] # 初始化参数 theta_initial = np.random.randn(2, 1) # 设置学习率和迭代次数 learning_rate = 0.01 iterations = 1000 # 运行梯度下降算法 theta_optimized, loss_history = gradient_descent(X_b, y, theta_initial, learning_rate, iterations) print("Optimized theta:", theta_optimized) ``` 在上面的示例代码中,我们首先定义了一个简单的线性回归问题,然后使用梯度下降算法来拟合参数。最终输出了优化后的参数theta。 请注意,上述示例代码仅用于演示梯度下降算法的实现过程,并不是最优化的实现方式。实际应用中,可以使用更高效的优化算法,如批量梯度下降、随机梯度下降或者使用优化库(如SciPy)中的函数来完成参数优化

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JSU_曾是此间年少

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值