大模型应用开发必知必会(Datawhale AI 夏令营)

一、大模型的概念

        大模型(Large Model)是指具有数千万甚至数亿参数的深度学习模型,这类模型近年来在人工智能领域,尤其是自然语言处理(NLP)和计算机视觉(CV)等领域取得了显著的成果。

        为了深入探索人类语言的内在规律,研究者们逐步发展出了一系列语言模型,这些模型旨在精确预测词序列中下一个词或填补缺失词的概率。以下是语言模型演进的四个主要阶段,各阶段的优化描述如下:

  1. 统计语言模型(Statistical Language Model, SLM):此阶段模型基于马尔可夫假设,通过构建𝑛元(𝑛-gram)模型来捕捉语言序列的统计特性。这种方法简化了语言的复杂性,为语言建模提供了早期有效的框架。

  2. 神经语言模型(Neural Language Model, NLM):随着神经网络技术的兴起,研究者们开始利用循环神经网络(Recurrent Neural Networks, RNN)等架构来构建语言模型,这些模型能够学习上下文相关的词表示,即词嵌入(Word Embedding),显著提升了语言模型的预测能力和对语义的理解深度。代表性成果如word2vec,标志着语言建模进入了神经网络驱动的新时代。

  3. 预训练语言模型(Pre-trained Language Model, PLM):此阶段见证了语言模型的一次重大飞跃,通过在大规模无标注数据上预先训练复杂的模型(如双向LSTM或Transformer),然后在特定任务上进行微调,极大地提高了模型的泛化能力和下游任务的性能。代表性工作包括ELMo、BERT、GPT系列(GPT-1/2),这些模型展示了深度预训练技术在自然语言处理领域的巨大潜力。

  4. 大语言模型(Large Language Model, LLM):基于“扩展法则”的洞察,即模型规模和训练数据的增加能显著提升性能,并可能激发模型产生前所未有的“涌现能力”,研究者们开发了超大规模的语言模型。这些模型,如GPT-3、ChatGPT、Claude、Llama等,不仅在各类NLP任务中取得了卓越表现,还展现出了生成文本、回答问题、甚至进行创造性对话等高级能力,标志着人工智能在语言理解和生成领域迈出了重要一步。

二、大模型的构建过程 

大模型的构建过程是一个复杂且多阶段的流程,旨在通过海量的数据和强大的计算资源来训练出具有卓越性能和广泛适用性的模型。以下是对大模型构建过程的详细说明,结合预训练、有监督微调以及基于人类反馈的强化学习对齐三个阶段:

1. 预训练(Pretraining)

数据收集与清洗

  • 海量数据:收集并整合来自互联网的海量文本数据,这些数据应覆盖广泛的主题和领域,以确保模型的泛化能力。
  • 数据清洗:对收集到的数据进行清洗,去除有害、低质或重复的内容,确保训练数据的质量和多样性。

模型架构选择

  • 大多数大模型采用Transformer架构,特别是解码器架构(如GPT系列),因为它们在语言生成任务中表现出色。

训练过程

  • 初始化参数:随机初始化模型参数或基于先前模型的参数进行初始化。
  • 训练任务:设计适合预训练的任务,如语言建模(预测下一个词)、掩码语言建模(如BERT中的任务)等。
  • 训练执行:在高性能计算集群上执行训练过程,使用分布式训练技术加速训练过程。训练过程中需要监控模型行为,调整学习率等超参数,以确保训练效果。

资源需求

  • 计算资源:需要大规模的GPU集群来支持训练过程中的大规模矩阵运算。
  • 存储资源:由于模型和数据规模庞大,需要足够的存储空间来保存模型参数和训练数据。

2. 有监督微调(Supervised Fine-tuning, SFT)

任务定义

  • 定义具体的下游任务,如文本分类、问答系统、摘要生成等。

数据准备

  • 收集与任务相关的成对数据集,包括输入和预期输出。

微调过程

  • 调整模型结构(如果需要):根据任务需求调整模型结构,如添加特定于任务的层或调整输出层。
  • 训练模型:使用有监督学习算法,在任务数据集上训练模型,使其学会根据输入生成正确的输出。
  • 优化模型:通过调整学习率、批量大小等超参数,以及使用正则化、dropout等技术来防止过拟合,优化模型性能。

效果评估

  • 在验证集上评估模型性能,根据评估结果调整模型结构和训练参数。

3. 基于人类反馈的强化学习对齐(Reinforcement Learning from Human Feedback, RLHF)

奖励模型训练

  • 数据收集:收集人类专家对模型输出的偏好排序数据。
  • 训练奖励模型:使用这些数据训练一个能够评估模型输出质量的奖励模型。

强化学习训练

  • 策略优化:利用奖励模型作为反馈信号,通过强化学习算法优化模型策略,使其输出更符合人类期望。
  • 迭代训练:反复进行模型输出、人类反馈、奖励模型更新和模型策略优化的过程,直到模型性能达到满意水平。

简化对齐方法

  • 为了降低对齐过程的复杂性和计算成本,研究者们还探索了不需要强化学习的对齐方法,如直接偏好优化(DPO),这些方法通过优化与人类偏好相关的目标函数来实现模型与人类对齐。

三、大模型时代挖掘模型能力的开发范式

在大模型时代,挖掘模型能力的开发范式呈现出多样化和高效化的特点。这些范式不仅有助于充分发挥大模型的内在潜能,还促进了AI技术在各行业的广泛应用。以下是对这些开发范式的详细说明:

1. Prompt工程

Prompt工程(Prompt Engineering)是挖掘大模型能力的一种重要手段,它通过精心设计的提示(Prompt)来引导大模型完成任务。这种方法的核心在于,通过调整提示的内容和结构,使大模型能够更准确地理解任务要求,并生成符合预期的输出。

关键技术:
  • 上下文学习(In-Context Learning, ICL)
    • 原理:将任务说明及示例融入提示文本中,利用大模型自身的归纳能力,使其在不需要额外训练的情况下,通过推理和类比完成新任务。
    • 优势:快速、灵活,适用于多种场景。
  • 思维链提示(Chain-of-Thought, CoT)
    • 原理:在提示信息中引入连贯的逻辑推理链条,帮助大模型在处理复杂问题时,能够按照清晰的逻辑步骤进行推理。
    • 效果:显著增强大模型处理复杂问题的能力,提高答案的准确性和可解释性。

2. Embedding辅助

由于大模型在知识局限性和数据安全性等方面存在不足,Embedding辅助成为了一种有效的解决方案。通过将知识提前转化为Embedding向量并存储于知识库中,大模型可以在需要时检索并运用这些外部知识。

优势:
  • 扩展知识边界:解决大模型知识局限性的问题,使其能够处理实时性或非公开的知识。
  • 增强安全性:避免将敏感数据纳入训练集,保护企业数据安全。
  • 减少模型幻觉:通过引入外部知识,减少大模型在不具备相关知识或不擅长场景中的错误输出。

3. 参数高效微调

模型微调是提升大模型在特定任务上表现的重要手段。然而,由于大模型参数量巨大,全量参数微调需要消耗大量算力。因此,参数高效微调(Parameter-efficient Fine-tuning)成为了一种更加高效的选择。

方法:
  • 构建指令训练数据:针对特定任务构建包含指令和期望输出的训练数据集。
  • 有监督微调:通过有监督学习的方式,对大模型的部分参数进行微调,使其更好地遵循和执行人类指令。
  • 参数高效性:仅训练少量关键参数,即可达到与全量微调相近的效果,显著降低计算成本。

四、大模型应用开发 必知必会

通常,一个完整的大模型应用包含一个客户端和一个服务端。

客户端接收到用户请求后,将请求输入到服务端,服务端经过计算得到输出后,返回给客户端回复用户的请求。

1、客户端

在大模型应用中,客户端需要接受用户请求,并且能将回复返回给用户。

目前,客户端通常使用 GradioStreamlit 进行开发。

2、服务端

在探讨大模型应用的服务端实现方式时,我们主要分析了两种策略:直接调用大模型API和本地部署大模型。这两种方式各有其显著的优势和潜在的劣势,适用于不同的业务场景和需求。

直接调用大模型API

优点总结:
  1. 便捷性:用户无需关心模型的维护和更新,这些工作由服务商负责,降低了技术门槛和运维成本。
  2. 资源效率:通过云服务,用户无需投资和维护昂贵的硬件,按需付费,能够灵活调整成本支出。
  3. 稳定性与安全性:服务商通常拥有专业的技术团队来保障系统的稳定性和数据的安全性。
  4. 扩展性:API服务易于集成到现有的应用和服务中,支持高并发请求,便于快速扩展业务。
缺点总结:
  1. 网络延迟:依赖于稳定的网络连接,网络状况不佳时可能导致服务响应延迟。
  2. 数据隐私:数据传输到服务商服务器,增加了数据泄露的风险,尤其对于敏感数据处理需格外小心。
  3. 成本控制:高频次或大量数据调用会显著增加费用,长期成本可能较高。
  4. 依赖性:受制于服务商的政策变化,如价格调整、服务条款变更等,可能影响业务稳定性和成本预算。

大模型本地部署

优点总结:
  1. 数据主权:数据在本地处理,增强了数据的安全性和隐私保护能力。
  2. 性能可控:可根据业务需求优化资源配置,减少网络延迟,提升服务响应速度。
  3. 成本固定:初期投资后,长期运行成本相对可预测,避免了按使用量付费的不确定性。
  4. 定制化:便于根据特定需求进行模型微调或功能扩展,提升服务差异化竞争力。
缺点总结:
  1. 硬件投资:需要投入大量资金购买高性能硬件,如GPU,初期成本较高。
  2. 运维复杂:需要专业的运维团队来管理模型的更新、维护和故障排查,增加了运维难度和成本。
  3. 技术门槛:对于非专业团队而言,模型的部署、优化和调试可能是一项挑战。
  4. 资源利用率:在低负载情况下,本地硬件资源可能无法得到充分利用,造成资源浪费。
  • 14
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值