数据清洗python

本文使用Python对葡萄牙银行电话营销数据进行清洗,通过计算众数、中位数、均值来处理缺失值和异常值,同时运用KMeans进行聚类分析。涉及的属性包括客户信息、联络信息、其他属性等,旨在提高数据质量。
摘要由CSDN通过智能技术生成

利用众数、中位数、均值、聚类分析等方法,实现对葡萄牙银行电话营销数据(http://archive.ics.uci.edu/ml/datasets/Bank+Marketing#)进行有效清洗。

数据字段说明:

(1)银行客户信息:

  1. age: 年龄 (数字)
  2. job: 工作类型 。管理员(admin),蓝领(blue-collar),企业家(entrepreneur),家庭主妇(housemaid),管理者('management'),退休('retired'),个体经营('self-employed'),服务业('services'),学生('student'),技术人员('technician'),无业('unemployed'),未知('unknown')
  3. marital : 婚姻状态,离婚('divorced'),结婚('married'),单身('single'),未知('unknown')。说明:离婚也包括寡居
  4. education: 教育情况 : 基本4年('basic.4y'), 基本6年('basic.6y'),基本九年('basic.9y'),高中&
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值