L1与L2正则化

正则化方法主要目标是减少泛化误差而非训练误差,防止过拟合。通过限制参数如W的取值范围,可以降低噪声对新数据的影响。L1正则化能引入稀疏性,使某些特征突出,有助于特征选择和去耦合。虽然可能会增加偏差,但对过拟合的控制效果显著。
摘要由CSDN通过智能技术生成

正则化方法:减少泛化误差,而不是减少训练误差的方法(减少过拟合)。训练神经网络的时候,我们的目的是找到损失函数的最小值,就算损失函数的值是相同的,得到的 W 和 B 也可能是一组一组不同的值。当输入一个新的数据,当参数数值比较大的时候,这样会放大误差与噪声(统计中心法则)。一种方法是给参数一个可行域,让其在域内求最值(一般只需要规定 W )。

(注意:这里只需要一个参数(不需要C))

 

 

X,Y两个轴表示两种特征第二张图上的点表示可能只需要一个特征就能进行判断(L1正则化可以带来稀疏性:某些特征起作用,将特征与特征之间的关系去耦合了,也恰恰是减少过拟合的过程)。(正则化可能带来偏差但是没有想象的那么大。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值