- 博客(2)
- 收藏
- 关注
原创 深度神经网络经典模型结构(2)VGG16
输入图像尺寸为224x224x3,经64个通道为3的3x3的卷积核,步长为1,padding=same填充,卷积两次,再经ReLU激活,输出的尺寸大小为224x224x64。经max pooling(最大化池化),滤波器为2x2,步长为2,图像尺寸减半,池化后的尺寸变为112x112x64。经256个3x3的卷积核,三次卷积,ReLU激活,尺寸变为56x56x256。经512个3x3的卷积核,三次卷积,ReLU激活,尺寸变为28x28x512。max pooling池化,尺寸变为14x14x512。
2025-03-26 17:44:52
461
原创 深度神经网络经典模型结构(1)CSPDarknet
目的:增加通道数,原本input的图像是640*640*3,现在与一个6*6*64 的卷积核卷积(图里虽然是3*3,但代码里实际参数是(6,2),说明是6*6的卷积核,进行了一次步长为2的下采样,将特征图尺寸减半),并且进行了一次下采样,output变成320*320*64。那,什么是深度可分离卷积?bottleneck后面介绍,split原文理论上其实是把input的通道二等分,比如原来是64*64*32,分成两个64*64*16,分别处理,但实际上,大家的代码是直接把原图分别进行处理,并没有分割。
2025-03-26 17:34:41
1284
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人