CINTA——8

CINTA——8

第十二章习题1

证明:因为环 R R R带有单位元 1 1 1,故 a = a 1 = 1 a a=a1=1a a=a1=1a,根据教材中的命题12.1,因此有 − a = − 1 a = ( − 1 ) a -a=-1a=(-1)a a=1a=(1)a得证。

习题2

由题意得: ∀ a , b ∈ R \forall a,b\in R a,bR,有 a 2 = a , b 2 = b a^2=a,b^2=b a2=a,b2=b,又因为R是环,根据环的定义,对加法操作封闭,所以有 a + b ∈ R a+b\in R a+bR,由题意有 ( a + b ) 2 = a + b ⇔ ( a + b ) 2 = a 2 + b 2 + a b + b a = a + b (a+b)^2=a+b\Leftrightarrow (a+b)^2=a^2+b^2+ab+ba=a+b (a+b)2=a+b(a+b)2=a2+b2+ab+ba=a+b,又因为 a 2 = a , b 2 = b a^2=a,b^2=b a2=a,b2=b,所以上式有 ( a + b ) 2 = a + b + a b + b a a + b ⇔ a b + b a = 0 (a+b)^2=a+b+ab+baa+b\Leftrightarrow ab+ba=0 (a+b)2=a+b+ab+baa+bab+ba=0,即 a b = − b a ab=-ba ab=ba

若要证明R是交换元,就要证明 a b = b a ab=ba ab=ba,故现在需要证明 − b a = b a -ba=ba ba=ba(一定不要忘记题中条件!!!),继续使用题目的条件 x 2 = x x^2=x x2=x,有 ( − b a ) 2 = − b a , ( b a ) 2 = b a (-ba)^2=-ba,(ba)^2=ba (ba)2=ba,(ba)2=ba,又根据命题12.1,有 ( − b a ) 2 = ( − b a ) ( − b a ) = ( b a ) 2 (-ba)^2=(-ba)(-ba)=(ba)^2 (ba)2=(ba)(ba)=(ba)2,综上可得: − b a = b a -ba=ba ba=ba,因此 a b = − b a = b a ab=-ba=ba ab=ba=ba, R R R是交换环。

习题3

Z n Z_n Zn配置上乘法 ∗ * ,则容易知 Z n Z_n Zn是环,(并且是一个交换环),则 Z n Z_n Zn在加法上的子群,根据子群的定义易知: Z n Z_n Zn在加法上的子群肯定满足环对加法的封闭性、交换律、单位元和逆元的要求,所以只需要证明 Z n Z_n Zn在加法上的子群满足环对于乘法的封闭性和结合律还有分配律的要求即可

对于乘法的结合律结合律显然成立,下面证明封闭性也成立:

Z n 1 Z_{n1} Zn1 Z n Z_n Zn的子群,任取 a , b ∈ Z n 1 a,b\in Z_{n_1} a,bZn1,则对于乘法 a ∗ b = a + a + . . . . . . + a ( m o d n ) (共有 b 个 a 相加) ∈ Z n 1 a*b=a+a+......+a\pmod {n}(共有b个a相加)\in Z_{n1} ab=a+a+......+a(modn)(共有ba相加)Zn1,故封闭性得证,因此 Z n Z_n Zn在加法上的子群是 Z n Z_n Zn的子环。

然后证明乘法对分配律也成立,即证明 ∀ a , b , c ∈ Z n 1 , ( a + b ) ⋅ c = a c + b c \forall a,b,c\in Z_{n_1},(a+b)\cdot c=ac+bc a,b,cZn1,(a+b)c=ac+bc, n ∗ ( a + b ) n*(a+b) n(a+b)就等于 n n n a + b a+b a+b相加, ( a + b ) ( a + b ) ⋯ ( a + b ) ⏟ c = a + a + ⋯ + a ⏟ c + b + b + ⋯ + b ⏟ c = a c + b c \underbrace{(a+b)(a+b)\cdots(a+b)}_{c}=\underbrace{a+a+\cdots+a}_{c}+\underbrace{b+b+\cdots+b}_{c}=ac+bc c (a+b)(a+b)(a+b)=c a+a++a+c b+b++b=ac+bc得证。

习题14

个人觉得这样想可能更简单一些

2 Z 2Z 2Z是整数环 Z Z Z通过 ϕ ( k ) = 2 k \phi(k)=2k ϕ(k)=2k映射形成的; 2 Z = { 0 , 2 , 4 , …   } 2Z=\{0,2,4,\dots\} 2Z={0,2,4,}。环 3 Z 3Z 3Z是整数环 Z Z Z通过 ϕ ( k ) = 3 k \phi(k)=3k ϕ(k)=3k映射形成的。 3 Z = { 0 , 3 , 6 , …   } 3Z=\{0,3,6,\dots\} 3Z={0,3,6,}。若要证明环 2 Z 2Z 2Z 3 Z 3Z 3Z同构,即证明环 2 Z 2Z 2Z 3 Z 3Z 3Z同态,并且它们之间的映射为双射。我们可以考虑它们之间的元素个数,因为如果要满足双射,那么它们之间的元素个数肯定是相同的。

但是 2 Z 2Z 2Z是无限个可以被2整除的偶数,环 3 Z 3Z 3Z是无限个可以被3整除的可奇可偶的整数,它们之间的元素个数并不相同,所以它们并不同构。

另一种思路是:

2 Z 和 3 Z 2Z和3Z 2Z3Z同构,则 ∀ a ∈ 2 Z \forall a \in2Z a2Z
存在双射使 ϕ ( a ) = ϕ ( a / 2 + a / 2 ) = ϕ ( a / 2 ) + ϕ ( a / 2 ) = 2 ϕ ( a / 2 ) ① \phi(a)=\phi(a/2+a/2)=\phi(a/2)+\phi(a/2)=2\phi(a/2)① ϕ(a)=ϕ(a/2+a/2)=ϕ(a/2)+ϕ(a/2)=2ϕ(a/2)
还有 ϕ ( a ) = ϕ ( a / 2 ∗ 2 ) = ϕ ( a / 2 ) ϕ ( 2 ) ② \phi(a)=\phi(a/2*2)=\phi(a/2)\phi(2)② ϕ(a)=ϕ(a/22)=ϕ(a/2)ϕ(2)
联立两个等式并化简有 ϕ ( a / 2 ) ( ϕ ( 2 ) − 2 ) = 0 ③ \phi(a/2)(\phi(2)-2)=0③ ϕ(a/2)(ϕ(2)2)=0③
因为 3 Z 3Z 3Z是环,所以有以下等式:
∀ a ∈ R , a 0 = 0 a = 0 \forall a\in R,a0=0a=0 aR,a0=0a=0
再根据③式类比得: ϕ ( 2 ) − 2 = 0 \phi(2)-2=0 ϕ(2)2=0,因此有 ϕ ( 2 ) = 2 \phi(2)=2 ϕ(2)=2
但是 2 ∉ 3 Z 2\notin 3Z 2/3Z,因此 2 Z 与 3 Z 2Z与3Z 2Z3Z不同构得证。

  • 22
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值