CINTA——群、子群的相关证明

完成以下证明:

命题 6.6
G \mathbb{G} G为群,且 a, b, c ∈ \in G \mathbb{G} G。如果 ba = ca,则 b = c;并且,如果 ab = ac,则 b = c。

证明:
ba=ca.
两边同时与a的逆元进行运算,baa − ^- 1 ^1 1=caa − ^- 1 ^1 1
G满足结合律,因此,b(aa − ^- 1 ^1 1)=c(aa − ^- 1 ^1 1)
整理得be=ce
进而b=c

命题6.7
G \mathbb{G} G是群, ∀ \forall a,b ∈ \in G \mathbb{G} G,以下性质成立。
∀ \forall m,n ∈ \in Z \mathbb{Z} Z,g m ^m mg n ^n n=g m ^m m + ^+ + n ^n n;
∀ \forall m,n ∈ \in Z \mathbb{Z} Z,(g m ^m m) n ^n n=g m ^m m n ^n n;
∀ \forall m,n ∈ \in Z \mathbb{Z} Z,(gh) n ^n n=(h − ^- 1 ^1 1g − ^- 1 ^1 1) − ^- n ^n n;如果 G \mathbb{G} G是阿贝尔群,则(gh) n ^n n=g n ^n nh n ^n n

证明:
证明①:
(1)m,n ∈ \in N \mathbb{N} N
g m ^m m= { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } m − 1 次 群 运 算 {\color{Blue}m-1次群运算} m1
g n ^n n= { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

g m ^m mg n ^n n

= { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } m − 1 次 群 运 算 {\color{Blue}m-1次群运算} m1· { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } m + n − 1 次 群 运 算 {\color{Blue}m+n-1次群运算} m+n1

=g m ^m m + ^+ + n ^n n

(2)n ∈ \in N \mathbb{N} N,m<0
g m ^m m= { {\color{Blue}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Blue}-m-1次群运算} m1
g n ^n n= { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

|m|<n,-m<n
g m ^m mg n ^n n

= { {\color{Blue}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Blue}-m-1次群运算} m1· { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {(g − ^- 1 ^1 1·g)·(g − ^- 1 ^1 1·g)·(g − ^- 1 ^1 1·g)……(g − ^- 1 ^1 1·g)   } {\color{Blue}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Blue}-m-1次群运算} m1· { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } n + m − 1 次 群 运 算 {\color{Blue}n+m-1次群运算} n+m1

=e· { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } n + m − 1 次 群 运 算 {\color{Blue}n+m-1次群运算} n+m1

=g m ^m m + ^+ + n ^n n

|m|>n,-m>n
g m ^m mg n ^n n

= { {\color{Blue}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Blue}-m-1次群运算} m1· { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {(g − ^- 1 ^1 1·g)·(g − ^- 1 ^1 1·g)·(g − ^- 1 ^1 1·g)……(g − ^- 1 ^1 1·g)   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1· { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } − m − n − 1 次 群 运 算 {\color{Blue}-m-n-1次群运算} mn1

=e· { {\color{Blue}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − m − n − 1 次 群 运 算 {\color{Blue}-m-n-1次群运算} mn1

=g m ^m m + ^+ + n ^n n

(3)m ∈ \in N \mathbb{N} N,n<0
证明与(2)同理。

(4)m<0,n<0
g m ^m m n ^n n

= { {\color{Blue}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Blue}-m-1次群运算} m1· { {\color{Blue}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Blue}-n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − m − n − 1 次 群 运 算 {\color{Blue}-m-n-1次群运算} mn1

=g m ^m m + ^+ + n ^n n

证明②:
(1)m,n ∈ \in N \mathbb{N} N
(g m ^m m) n ^n n

= { {\color{Blue}\left\{\right.} {g m ^m m·g m ^m m·g m ^m m……g m ^m m   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

= { {\color{Blue}\left\{\right.} { { {\color{Orange}\left\{\right.} {g·g·g……g   } {\color{Orange}\left . \ \right \}}  } m − 1 次 群 运 算 {\color{Orange}m-1次群运算} m1· { {\color{Orange}\left\{\right.} {g·g·g……g   } {\color{Orange}\left . \ \right \}}  } m − 1 次 群 运 算 {\color{Orange}m-1次群运算} m1· { {\color{Orange}\left\{\right.} {g·g·g……g   } {\color{Orange}\left . \ \right \}}  } m − 1 次 群 运 算 {\color{Orange}m-1次群运算} m1…… { {\color{Orange}\left\{\right.} {g·g·g……g   } {\color{Orange}\left . \ \right \}}  } m − 1 次 群 运 算 {\color{Orange}m-1次群运算} m1   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } m n − 1 次 群 运 算 {\color{Blue}mn-1次群运算} mn1

=g m ^m m n ^n n

(2)n ∈ \in N \mathbb{N} N,m<0
(g m ^m m) n ^n n

= { {\color{Blue}\left\{\right.} {g m ^m m·g m ^m m·g m ^m m……g m ^m m   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

= { {\color{Blue}\left\{\right.} { { {\color{Orange}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Orange}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Orange}-m-1次群运算} m1· { {\color{Orange}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Orange}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Orange}-m-1次群运算} m1· { {\color{Orange}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Orange}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Orange}-m-1次群运算} m1…… { {\color{Orange}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Orange}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Orange}-m-1次群运算} m1   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − m n − 1 次 群 运 算 {\color{Blue}-mn-1次群运算} mn1

=g m ^m m n ^n n

(3)m ∈ \in N \mathbb{N} N,n<0
(g m ^m m) n ^n n

= { {\color{Blue}\left\{\right.} {g − ^- m ^m m·g − ^- m ^m m·g − ^- m ^m m……g − ^- m ^m m   } {\color{Blue}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Blue}-n-1次群运算} n1

= { {\color{Blue}\left\{\right.} { { {\color{Orange}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Orange}\left . \ \right \}}  } m − 1 次 群 运 算 {\color{Orange}m-1次群运算} m1· { {\color{Orange}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Orange}\left . \ \right \}}  } m − 1 次 群 运 算 {\color{Orange}m-1次群运算} m1· { {\color{Orange}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Orange}\left . \ \right \}}  } m − 1 次 群 运 算 {\color{Orange}m-1次群运算} m1…… { {\color{Orange}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Orange}\left . \ \right \}}  } m − 1 次 群 运 算 {\color{Orange}m-1次群运算} m1   } {\color{Blue}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Blue}-n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − m n − 1 次 群 运 算 {\color{Blue}-mn-1次群运算} mn1

=g m ^m m n ^n n

(4)m<0,n<0
(g m ^m m) n ^n n

= { {\color{Blue}\left\{\right.} {g − ^- m ^m m·g − ^- m ^m m·g − ^- m ^m m……g − ^- m ^m m   } {\color{Blue}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Blue}-n-1次群运算} n1

= { {\color{Blue}\left\{\right.} { { {\color{Orange}\left\{\right.} {g·g·g……g   } {\color{Orange}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Orange}-m-1次群运算} m1· { {\color{Orange}\left\{\right.} {g·g·g……g   } {\color{Orange}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Orange}-m-1次群运算} m1· { {\color{Orange}\left\{\right.} {g·g·g……g   } {\color{Orange}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Orange}-m-1次群运算} m1…… { {\color{Orange}\left\{\right.} {g·g·g……g   } {\color{Orange}\left . \ \right \}}  } − m − 1 次 群 运 算 {\color{Orange}-m-1次群运算} m1   } {\color{Blue}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Blue}-n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } m n − 1 次 群 运 算 {\color{Blue}mn-1次群运算} mn1

=g m ^m m n ^n n

证明③:
证 明 前 半 部 分 : {\color{Green}证明前半部分:}
由于 G \mathbb{G} G是群,根据命题6.3、命题6.4,(gh) − ^- 1 ^1 1=h − ^- 1 ^1 1g − ^- 1 ^1 1,且(h − ^- 1 ^1 1g − ^- 1 ^1 1) − ^- 1 ^1 1=h − ^- 1 ^1 1g − ^- 1 ^1 1,((gh) − ^- 1 ^1 1) − ^- 1 ^1 1=gh。

(1)n ∈ \in N \mathbb{N} N
(gh) n ^n n

= { {\color{Blue}\left\{\right.} {(gh)·(gh)·(gh)……(gh)   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

(h − ^- 1 ^1 1g − ^- 1 ^1 1) − ^- n ^n n

=((gh) − ^- 1 ^1 1) − ^- n ^n n

= { {\color{Blue}\left\{\right.} {(((gh) − ^- 1 ^1 1) − ^- 1 ^1 1)·(((gh) − ^- 1 ^1 1) − ^- 1 ^1 1)·(((gh) − ^- 1 ^1 1) − ^- 1 ^1 1)……(((gh) − ^- 1 ^1 1) − ^- 1 ^1 1)   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {(gh)·(gh)·(gh)……(gh)   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

=(gh) n ^n n

(2)n<0
(gh) n ^n n

= { {\color{Blue}\left\{\right.} {(gh) − ^- 1 ^1 1·(gh) − ^- 1 ^1 1·(gh) − ^- 1 ^1 1……(gh) − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Blue}-n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {(h − ^- 1 ^1 1g − ^- 1 ^1 1)·(h − ^- 1 ^1 1g − ^- 1 ^1 1)·(h − ^- 1 ^1 1g − ^- 1 ^1 1)……(h − ^- 1 ^1 1g − ^- 1 ^1 1)   } {\color{Blue}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Blue}-n-1次群运算} n1

=(h − ^- 1 ^1 1g − ^- 1 ^1 1) − ^- n ^n n

综上,前半部分得证。

证 明 后 半 部 分 : {\color{Green}证明后半部分:}
(1)n ∈ \in N \mathbb{N} N
(gh) n ^n n

= { {\color{Blue}\left\{\right.} {(gh)·(gh)·(gh)……(gh)   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1

由于 G \mathbb{G} G是阿贝尔群,满足 ∀ \forall a,b ∈ \in G \mathbb{G} G,a·b=b·a,则:
原式
= { {\color{Orange}\left\{\right.} { { {\color{Blue}\left\{\right.} {g·g·g……g   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1· { {\color{Blue}\left\{\right.} {h·h·h……h   } {\color{Blue}\left . \ \right \}}  } n − 1 次 群 运 算 {\color{Blue}n-1次群运算} n1   } {\color{Orange}\left . \ \right \}}  }

=g n ^n nh n ^n n

(2)n<0
(gh) n ^n n

= { {\color{Blue}\left\{\right.} {(gh) − ^- 1 ^1 1·(gh) − ^- 1 ^1 1·(gh) − ^- 1 ^1 1……(gh) − ^- 1 ^1 1   } {\color{Blue}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Blue}-n-1次群运算} n1

= { {\color{Blue}\left\{\right.} {(h − ^- 1 ^1 1g − ^- 1 ^1 1)·(h − ^- 1 ^1 1g − ^- 1 ^1 1)·(h − ^- 1 ^1 1g − ^- 1 ^1 1)……(h − ^- 1 ^1 1g − ^- 1 ^1 1)   } {\color{Blue}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Blue}-n-1次群运算} n1
由于 G \mathbb{G} G是阿贝尔群,满足 ∀ \forall a,b ∈ \in G \mathbb{G} G,a·b=b·a,则:
原式

= { {\color{Orange}\left\{\right.} {g − ^- 1 ^1 1·g − ^- 1 ^1 1·g − ^- 1 ^1 1……g − ^- 1 ^1 1   } {\color{Orange}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Orange}-n-1次群运算} n1· { {\color{Orange}\left\{\right.} {h − ^- 1 ^1 1·h − ^- 1 ^1 1·h − ^- 1 ^1 1……h − ^- 1 ^1 1   } {\color{Orange}\left . \ \right \}}  } − n − 1 次 群 运 算 {\color{Orange}-n-1次群运算} n1

=g n ^n nh n ^n n

综上,后半部分得证。

证明对任意偶数阶群 G \mathbb{G} G,都存在 g ∈ \in G \mathbb{G} G,g ≠ e 且 g 2 ^2 2= e。

证明:
由题意,若g 2 ^2 2=e,则g·g=e,即g的逆元为自身。
假设偶数阶群 G \mathbb{G} G的阶数为n=2m,m ∈ \in N \mathbb{N} N ∗ ^* ,则 G \mathbb{G} G中元素的个数为n=2m。
根据群的定义, G \mathbb{G} G中存在一个单位元e,由定义可知,单位元的逆元是其本身,即e − ^- 1 ^1 1 ∈ \in G \mathbb{G} G,e·e − ^- 1 ^1 1=e − ^- 1 ^1 1·e=e,则e − ^- 1 ^1 1=e。
以下要证明的为,除去e还存在与自身互为逆元的元素。
由于 G \mathbb{G} G中任意元素都存在逆元,除去单位元外,有n-2=2m-1个元素,假设这2m-1个元素的逆元都不是自身,根据逆元的定义可知,不同元素的逆元不同,因此这2m-1个元素将构成 2 m − 1 2 \frac{2m-1}{2} 22m1对互为逆元的组合。
但由于 2 m − 1 2 \frac{2m-1}{2} 22m1=m- 1 2 \frac{1}{2} 21,很显然不是整数,这是不合理的,因此,假设不成立,这2m-1个元素一定存在逆元是自身的,即存在 g ∈ \in G \mathbb{G} G,g ≠ e 且 g·g − ^- 1 ^1 1=g − ^- 1 ^1 1·g=e,即g 2 ^2 2= e,原命题得证。

命题 6.9
G \mathbb{G} G 的非空子集 H \mathbb{H} H G \mathbb{G} G的子群,当且仅当对任意 a, b ∈ \in H \mathbb{H} H,ab − ^- 1 ^1 1 ∈ \in H \mathbb{H} H

证明:

证明充分性:
因为 H \mathbb{H} H G \mathbb{G} G的子群,所以 H \mathbb{H} H满足群公理。
因此 ∀ \forall b ∈ \in H \mathbb{H} H,存在逆元b − ^- 1 ^1 1 ∈ \in H \mathbb{H} H,根据封闭性可知ab − ^- 1 ^1 1 ∈ \in H \mathbb{H} H。充分性得证。

证明必要性:
根据 ∀ \forall a,b ∈ \in H \mathbb{H} H,ab − ^- 1 ^1 1 ∈ \in H \mathbb{H} H,易知 ∀ \forall b ∈ \in H \mathbb{H} H,存在逆元b − ^- 1 ^1 1,则第四条群公理得证。
而a,b − ^- 1 ^1 1 ∈ \in H \mathbb{H} H,ab − ^- 1 ^1 1 ∈ \in H \mathbb{H} H则满足了封闭性。
根据逆元的定义,bb − ^- 1 ^1 1=e=b − ^- 1 ^1 1b,由此可知单位元e存在,则第三条群公理得证。
由于 G \mathbb{G} G是群,其中的元素满足结合律,而 H \mathbb{H} H G \mathbb{G} G的子集, H \mathbb{H} H中的元素都是 G \mathbb{G} G中的元素,则一定满足结合律。
以上,四条群公理得证, H \mathbb{H} H在群 G \mathbb{G} G的操作符上满足群公理且是 G \mathbb{G} G的子集,因此 H \mathbb{H} H G \mathbb{G} G的子群。必要性得证。

综上所述,原命题得证。

证明:设 G \mathbb{G} G是群,对任意n∈ N \mathbb{N} N,i ∈ \in [0,n],g i _i i ∈ \in G \mathbb{G} G。证明g 0 _0 0g 1 _1 1…g n _n n的逆元是g n _n n − ^- 1 ^1 1…g 1 _1 1 − ^- 1 ^1 1g 0 _0 0 − ^- 1 ^1 1

证明:
对任意n ∈ \in N \mathbb{N} N,i ∈ \in [0,n],g i _i i ∈ \in G \mathbb{G} G,g i _i i存在一个逆元g i _i i − ^- 1 ^1 1,则g i _i ig − ^- 1 ^1 1=e。
因此,(g 0 _0 0g 0 _0 0 − ^- 1 ^1 1)(g 1 _1 1g 1 _1 1 − ^- 1 ^1 1)…(g n _n ng n _n n − ^- 1 ^1 1)=ee…e=e
(n个e)

根据结合律,
e=(g 0 _0 0g 0 _0 0 − ^- 1 ^1 1)(g 1 _1 1g 1 _1 1 − ^- 1 ^1 1)…(g n _n ng n _n n − ^- 1 ^1 1)
=(g 0 _0 0g 1 _1 1…g n _n n
(g 0 _0 0 − ^- 1 ^1 1g 1 _1 1 − ^- 1 ^1 1g n _n n − ^- 1 ^1 1)
=(g 0 _0 0g 1 _1 1…g n _n n
(g n _n n − ^- 1 ^1 1…g 1 _1 1 − ^- 1 ^1 1g 0 _0 0 − ^- 1 ^1 1)

因此,g 0 _0 0g 1 _1 1…g n _n n的逆元是g n _n n − ^- 1 ^1 1…g 1 _1 1 − ^- 1 ^1 1g 0 _0 0 − ^- 1 ^1 1.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值