CINTA——1选做

CINTA——1选做

第一章第六题

根据除法算法, ∀ a ∈ Z , ∃ k , r ∈ Z , 0 ≤ r < 3 \forall a \in Z,\exists k,r\in Z,0\leq r<3 aZ,k,rZ,0r<3,使得 a = 3 k + r a=3k+r a=3k+r,其中3可以理解为是a的除数。

因此有 a 2 = 9 k 2 + 3 k r + r 3 k + r 2 a^2=9k^2+3kr+r3k+r^2 a2=9k2+3kr+r3k+r2,易知 3 ∣ 9 k 2 + 3 k r + r 3 k 3 | 9k^2+3kr+r3k 3∣9k2+3kr+r3k,故有
a 2 ≡ r 2 ( m o d 3 ) a^2\equiv r^2\pmod{3} a2r2(mod3)
因为 r ∈ Z , 0 ≤ r < 3 r\in Z,0\leq r<3 rZ,0r<3,故 r r r只可以取到 0 , 1 , 2 0,1,2 0,1,2,因此上式有 a 2 ≡ 0 2 , 1 2 , 2 2 ( m o d 3 ) a^2\equiv 0^2,1^2,2^2\pmod{3} a202,12,22(mod3),因为 2 ( m o d 3 ) = − 1 ( m o d 3 ) 2\pmod{3}=-1\pmod{3} 2(mod3)=1(mod3),故 a 2 ≡ 0 , 1 ( m o d 3 ) a^2\equiv 0,1\pmod{3} a20,1(mod3),根据除法算法,有 a 2 = 3 k a^2=3k a2=3k或者 z 2 = 3 k + 1 z^2=3k+1 z2=3k+1。证毕。

第一章第七题

//判断输入的整数是否为一个平方数
bool tell(int n) {
	for (int i = 0; i <= sqrt(n); i++) {
		if (pow(i, 2) == n)return true;
		else return false;
	}
}

第一章第八题

对于形如 111 ⋯ 111 ⏟ n \underbrace{{111\cdots111}}_{n} n 111111的数我们很容易想到这是一个二进制数,但实际上它也有可能是十进制数,所以我们需要从两个方面来进行证明。

先证明结论对于二进制数成立:如果是一个二进制数,则转化为十进制数为 2 n − 1 2^n-1 2n1,我们采用反证法,若 2 n − 1 2^n-1 2n1是一个平方数,则假设它的因子是a,又因为 2 n − 1 2^n-1 2n1是奇数,奇数如果为一个平方数,那么它的因子也一定都是奇数。故a为奇数,设 a = 2 k + 1 , k ∈ Z a=2k+1,k\in Z a=2k+1,kZ,故有
2 n − 1 = a 2 = ( 2 k + 1 ) 2 = 4 k 2 + 4 k + 1 2^n-1=a^2=(2k+1)^2=4k^2+4k+1 2n1=a2=(2k+1)2=4k2+4k+1
⇒ 2 n − 2 = 4 k ( k + 1 ) \Rightarrow 2^n-2=4k(k+1) 2n2=4k(k+1)此时等式两侧还都是偶数,现在对等式两侧同时除以2,有
2 n − 1 − 1 = 2 k ( k = 2 ) 2^{n-1}-1=2k(k=2) 2n11=2k(k=2)
此时等式左侧为奇数,等式右侧为偶数,等式不应成立,故假设: 2 n − 1 2^n-1 2n1是平方数是错误的

下面再证明结论对于十进制数也成立,如果是一个十进制数,则可以转化为十进制数 1 0 n − 1 10^n-1 10n1,其后的证明思路与上面相同,这里不再赘述,直接给出结果, 1 0 n − 1 10^n-1 10n1是平方数是错误的。

综上,题中结论得证。

第二章第九题

由贝祖定理可知, g c d ( a , b ) = 1 ⇒ a r 1 + b s 1 = 1 ① gcd(a,b)=1\Rightarrow ar_1+bs_1=1 ① gcd(a,b)=1ar1+bs1=1①

同理, g c d ( a , c ) = 1 ⇒ a r 2 + c s 2 = 1 ② gcd(a,c)=1\Rightarrow ar_2+cs_2=1 ② gcd(a,c)=1ar2+cs2=1②

要证明 g c d ( a , b c ) = 1 gcd(a,bc)=1 gcd(a,bc)=1,因为有bc的乘积所以对于上面的方程组我们选择利用乘法而不是加法,这个才可以得到bc的乘积形式

我们利用 “ 1 ” “1” “1”的等式代换的思想
a r 1 + b s 1 ⋅ 1 = a r 1 + b s 1 ( a r 2 + c s 2 ) = a ( r 1 + b s 1 s 2 ) + b c ( s 1 s 2 ) ar_1+bs_1\cdot1=ar_1+bs_1(ar_2+cs_2)=a(r_1+bs_1s_2)+bc(s_1s_2) ar1+bs11=ar1+bs1(ar2+cs2)=a(r1+bs1s2)+bc(s1s2)
再次根据贝祖定理可知: a r + b c s = 1 ar+bcs=1 ar+bcs=1,其中 r = r 1 + b s 1 s 2 , s = s 1 s 2 r=r_1+bs_1s_2,s=s_1s_2 r=r1+bs1s2,s=s1s2,故 g c d ( a , b c ) = 1 gcd(a,bc)=1 gcd(a,bc)=1得证。

第二章第十题

思路与第九题相同,我们已知 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1,那么利用第九题的思路 a r + b s ⋅ 1 = 1 ⇒ a r + b s ( a r + b s ) = 1 ⇒ a r ′ + b 2 s ′ = 1 ① ar+bs\cdot 1=1\Rightarrow ar+bs(ar+bs)=1\Rightarrow ar'+b^2s'=1① ar+bs1=1ar+bs(ar+bs)=1ar+b2s=1①
⋮ \vdots
⋮ \vdots
重复第①步n次,可得 a r + b n s = 1 ar+b^ns=1 ar+bns=1,即 g c d ( a , b n ) = 1 gcd(a,b^n)=1 gcd(a,bn)=1得证。

第二章第十一题

思路与第九题相同,不过这次是在第十题的基础上对a乘1
已知 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1,则根据第十题可知: g c d ( a , b n ) = 1 gcd(a,b^n)=1 gcd(a,bn)=1,现在对a乘1,重复n次可得, a n r + b n s = 1 a^nr+b^ns=1 anr+bns=1,即 g c d ( a n , b n ) = 1 gcd(a^n,b^n)=1 gcd(an,bn)=1得证。

第二章第十二题

我们假设 g c d ( a , b ) = c gcd(a,b)=c gcd(a,b)=c,则根据习题第八题(在博客CNTA——1),可知:有 g c d ( a / c , b / d ) = 1 gcd(a/c,b/d)=1 gcd(a/c,b/d)=1,再根据上面的第十一题可知, g c d ( ( a / c ) d , ( b / d ) d ) = 1 gcd((a/c)^d,(b/d)^d)=1 gcd((a/c)d,(b/d)d)=1,即 ( a / c ) d r + ( b / c ) d s = 1 (a/c)^dr+(b/c)^ds=1 (a/c)dr+(b/c)ds=1,即 a d r + b d s = c d ⇒ g c d ( a d , c d ) = g c d ( a , b ) d a^dr+b^ds=c^d\Rightarrow gcd(a^d,c^d)=gcd(a,b)^d adr+bds=cdgcd(ad,cd)=gcd(a,b)d得证。

  • 20
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值