动态规划母题:01背包问题

1. 前置知识

动态规划与图论,前缀和与差分等有模板的算法不同,动态规划更考察思维能力,而不是运用模板的能力。

个人认为 Acwing 关于动态规划的讲解比较容易理解。我会根据 Acwing 的动态规划解题思路来讲解题目。

虽说动态规划没有固定的模板,但是还是有相对固定的套路。但是思维能力以及经验积累在解决动态规划的题目中十分重要。

集合:表示状态中每一个下标位置可能的选择。

属性:表示状态中每一个下标位置可能的选择的属性。(一般是最大值或者最小值,将选择附加上属性,就会得到每一个下标位置的最终结果)。

状态计算:将每一个状态中的集合进行划分,根据集合的划分推出状态转移方程。

集合划分的依据:划分出来的所有集合的并集不得遗漏一个状态中的任何选择。但是可以重复。

这些东东可能会很抽象,后面的例题会帮助大家理解这写东东。

2. 01背包问题 (来源:Acwing)

原题链接:2. 01背包问题 - AcWing题库

题目描述:

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式:

第一行两个整数,N,V,,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi, wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式:

输出一个整数,表示最大价值。

数据范围:

0 < N, V ≤1000
0< vi, wi ≤1000

输入样例:

4 5
1 2
2 4
3 4
4 5

输出样例:

8

我们直接按照上面给出的套路来:

状态表示:f [i, j] (代表状态是一个二维的,这里就不写成二维数组的形式了,比较麻烦。) 

二维数组中每一个下标代表的集合:从 1 - i 个物品中选,并且总体积不超过 j 的选法的集合。

属性:集合中选法的最大价值。(将属性附加到集合得到的结果就是二维数组中每个下标的结果)

状态计算:

集合划分:将状态划分成两个集合:1:从1 - i 个物品中选,选择 i ,且价值不超过 j 的所有选法;2:从 1 - (i - 1) 个物品选,不选择 i ,且价值不超过 j 的所有选法。

划分依据的验证:二维数组每一个下标的最终值就是,代表从 1 - i 个物品中选,且总体积不超过 j 的选法的价值最大值。显然这个集合划分没有漏掉该下标位置对应的所有选法。

状态转移方程:根据集合划分,我们只要求出划分出的两个集合中所有选法价值的最大值即可。

注意:j - v[i] 必须保证 j >= v[i] 哦!最终的答案就是 f[N][V] 。

#include<iostream>
using namespace std;

const int N = 1010;
int v[N], w[N];
int f[N][N];
int m, n;

int main()
{
    cin >> m >> n;
    for(int i = 1; i <= m; i++)
        cin >> v[i] >> w[i];
        
    f[0][0] = 0; // 全局变量默认初始化为0,可以不写
    for(int i = 1; i <= m; i++)
    {
        for(int j = 0; j <= n; j++)
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i])
                f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
    }
    cout << f[m][n] << endl;
        
    return 0;
}

 3. 空间优化

直接将状态从二维压缩到一维,观察结果会不会出错:

f[ i ][ j ] = f[ i - 1][ j ],用到的是上一层即 i - 1 层的状态,若遍历体积大小( j )是从小到大遍历,那么状态压缩之后的计算结果就是用第 i 层的状态来算的,不正确,因此我们需要改变遍历的顺序,从大到小遍历。

f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]),用到的同样是上一层的状态,因此同样不能从小到达遍历体积,必须从大到小遍历体积才能保证状态的转移是从上一层来的。

综上所述,只需要改变体积的遍历顺序就可以将二维的状态压缩到一维。

#include<iostream>
using namespace std;

const int N = 1010;
int v[N], w[N];
int f[N];
int m, n;

int main()
{
    cin >> m >> n;
    for(int i = 1; i <= m; i++)
        cin >> v[i] >> w[i];
        
    f[0] = 0; // 全局变量默认初始化为0,可以不写
    for(int i = 1; i <= m; i++)
        for(int j = n; j - v[i] >= 0; j--)
            f[j] = max(f[j], f[j - v[i]] + w[i]);
            
    cout << f[n] << endl;
        
    return 0;
}

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姬如祎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值