多模态学习与检索增强生成(RAG)的结合是当前跨领域任务中的前沿研究方向,通过整合图像、文本、语音等多模态信息,弥补了单一模态的局限性。
最新研究表明,结合RAG能够有效提升多模态数据的检索与生成能力,利用生成模型和检索模块的协同作用,增强了对多模态信息的融合与处理效率。阿里巴巴团队提出的OmniSearch模型,通过动态检索规划框架,打破了传统多模态RAG的局限,显著提升了检索和生成的效率。
我整理了最新的10篇【多模态结合检索增强生成】的研究论文,全部论文PDF版,工中号【沃的顶会】回复“多模态RAG”即可领取~
Re-ranking the Context for Multimodal Retrieval
文章解析
论文提出了一种基于相关性评分(RS)的重排序方法,用于改进多模态检索增强生成(RAG)系统中的上下文选择。
通过替换传统的CLIP嵌入方法,RS能够更准确地选相关数据并减少无关信息的影响,从而提高生成响应的准确性和可靠性。
创新点
1.提出了基于RS模型的重排序方法,有效区分相关和不相关的多模态数据。
2.解决了CLIP在多模态检索中对通用内容过高的相似度评分问题。
3.引入了定量的相关性评分机制,增强了检索结果的质量和生成响应的准确性。
研究方法
1.设计了一个基于VLM的RS模型,通过细粒度训练评估查询与检索结果的相关性。
2.使用平衡的数据集训练RS模型,确保其能捕捉语义对齐和上下文相关性。
3.用COCO数据集验证RS方法在多模态RAG系统中的效果。
4.比较CLIP和RS在相似性评分上的表现,展示RS在区分相关和无关数据上的优势。
研究结论
1.RS模型显著提高了多模态RAG系统中相关上下文的选择质量。
2.相比CLIP,RS能够更有效地过滤无关数据,减少生成任务中的幻觉现象。
3.使用高级相关性度量可以提升多模态RAG系统的可靠性和生成响应的事实依据。
Unveiling the Potential of Multimodal Retrieval Augmented Generation with Planning
文章解析
本文提出了一种新型任务——多模态检索增强生成规划(MRAG Planning),旨在优化多模态大语言模型(MLLMS)性能,同时最小化计算开销。
通过引入CogPlanner框架和CogBench基准数据集,该研究解决了现有MRAG系统在信息获取与查询重构方面的局限性,并展示了显著提升的准确性和效率。
创新点
1.定义了多模态检索增强生成规划(MRAG Planning)这一新任务。
2.提出了受人类认知过程启发的CogPlanner框架,支持动态查询重构与检索策略选择。
3.开发了CogBench基准数据集,用于评估MRAG Planning任务并支持资源高效型MLLMs的微调。
研究方法
1.将MRAG Planning任务分解为信息获取和查询重构两个子任务。
2.设计CogPlanner框架,采用迭代方式完成查询重构与检索动作选择。
3.创建CogBench数据集,包含7000多个样本,用于训练和评估MRAG Planning模型。
4.结合GPT-40和人工标注,应用CoqPlanner进行多模态推理和生成任务。
研究结论
1.CogPlanner在多种MRAG方法上实现了超过15%的性能提升,且计算开销增加不足10%。
2.MRAG Planning能够有效应对多跳推理需求,提高系统对复杂查询的处理能力。
3.轻量级集成方案(如Qwen2-7b-VL-Cog)验证了资源高效型MLLMS在MRAG Planning中的可行性。