近期,参数高效微调(PEFT)技术在基础模型(FMs)领域取得了显著进展。清华大学唐杰教授团队发表了一篇综述论文,全面梳理了PEFT技术在各类基础模型中的应用。该论文指出,PEFT技术通过减少可训练参数和计算开销,在微调过程中展现出显著的成本效益,同时能够达到接近全量微调的性能。
例如,LoRA技术通过仅更新模型中低秩矩阵的参数,显著减少了训练所需的计算资源。此外,LoRA的升级版LoRA-RITE在ICLR 2025上提出,通过实现变换不变性,进一步优化了微调过程,显著提升了模型性能。
这些创新成果不仅推动了PEFT技术在语言模型、视觉模型和多模态模型中的应用,还为研究人员提供了宝贵的参考和研究方向。我整理了10篇【参数高效微调】的相关论文,全部论文PDF版,工中号【沃的顶会】回复“PEFT”即可领取。
Parameter Efficient Fine-Tuning for Deep Learning-Based Full-Waveform Inversion
文章解析
本文提出了一种任务无关的基础模型用于地震全波形反演(FWI),并引入参数高效微调(PEFT)技术以降低计算开销。
研究表明,PEFT在减少内存和计算需求的同时,能够实现与全量微调相当的结果,并在分布外任务上表现优于传统方法。
创新点
提出了适用于不同地质特征的任务无关基础模型,超越了特定任务模型的表现。
首次将PEFT技术应用于FWI领域,显著降低了计算和内存需求。
证明了PEFT在低数据场景和分布外任务中的优越性能,提升了模型泛化能力。
研究方法
构建了一个任务无关的基础模型,捕捉跨任务的通用特征。
通过全量微调验证了基础模型优于从头训练的特定任务模型。
应用PEFT方法(如LoRA)对基础模型进行微调,仅更新少量参数以适应新任务。
使用OpenFWI等基准数据集评估模型在多种地质场景下的表现。
研究结论
基础模型结合PEFT可以有效提升FWI任务的泛化能力。
PEFT在低数据场景和分布外任务中表现出色,适合地震反演领域的实际应用。
研究为开发高效、可扩展的DL-FWI模型提供了新的方向。
Adaptive Rank Allocation for Federated Parameter-Efficient Fine-Tuning of Language Models
文章解析
论文提出了一种新的联邦学习方法FedARA,通过截断奇异值分解(SVD)适应、动态秩分配和基于秩的模块剪枝三种创新技术。
解决了非独立同分布数据和固定参数配置对联邦参数高效微调(FedPEFT)的影响,显著提升了通信效率和系统性能。
创新点
首次提出全面解决FedPEFT中非IID数据和固定参数配置问题的方法。
引入截断SVD适应技术以增强模型灵活性和表达能力。
提出动态秩分配策略以优化通信效率。
设计基于秩的模块剪枝机制以减少计算和存储开销。
研究方法
利用截断SVD适应技术引入额外的对角矩阵更新幅度,缓解非IID数据影响。
通过动态秩分配方法生成局部和全局秩掩码,逐步修剪不重要秩以提高通信效率。
采用基于秩的模块剪枝机制移除不活跃模块,降低本地训练时间和峰值内存使用。
在多种嵌入式设备和数据集上进行实验验证方法的有效性。
研究结论
FedARA在非IID数据下平均比弱基线高8.49%,强基线高6.95%。
通信效率提升2.40倍,总训练时间减少最高达48.90%,能源消耗降低最多46.95%。
方法适用于移动设备,在资源受限环境下表现出色。