HexPlane复现——从零搭建笔记

密歇根大学研究人员提出HexPlane,一种利用六个特征平面高效合成动态场景新视图的显式表示方法,虽训练时间长但图像质量高。文章详细介绍了环境配置、数据准备和复现步骤,以及遇到的问题和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文链接:https://arxiv.org/pdf/2301.09632.pdf

项目地址:https://caoang327.github.io/HexPlane/

HexPlane简介

来自的密歇根大学的研究者提出了「HexPlane」,一种能高效合成动态场景新视图的方法。

在三维视觉中,动态三维场景的建模和重渲染是一项具有挑战性的任务。目前许多基于NeRF的方法在该任务中依赖于隐式表示,由于大量的MLP评估,这相对较慢,限制了现实世界中的应用。

作者发现动态3D场景可以由六个特征平面显式表示,从而产生了一个名为HexPlane的优雅解决方案。作为一种显式表示,HexPlane通过融合从每个平面提取的向量来计算时空点的特征,这是有效且高效的。通过微小的MLP,它为动态新视图合成提供了令人印象深刻的结果,与先前工作的图像质量相匹配,但将训练时间提高了100倍以上。

注意

HexPlane是使用 pytorch 预训练模型 VGG16 来进行预训练的

因此要格外注意是否能直接使用给的官方网址来进行下载

过程涉及到使用梯子

但也可以直接找其他博主下载好的

配置环境

    # create conda environment
    conda create --name hexplane python=3.8
    
    # activate env
    conda activate hexplane
    conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1  cudatoolkit=11.6 -c pytorch -c conda-forge

    # pip install 
    pip install -r requirements.txt
    python setup.py develop

这些应该配置起来都比较顺利

数据准备

 D-NeRF数据集 Plenoptic数据集都是可以的(点击即可下载对应的数据集)

接着在 dnerf_slim.yaml 文件中修改数据集地址

记得在下载的数据集中再添加一层 data 子目录,不然会一直报错,说找不到 json 文件

例如,我使用的是 lego 数据集

我就现在 lego 文件下新建一个data 目录

然后再把原本 lego 中的所有文件移到 data 目录下

训练

python main.py config=dnerf_slim.yaml

我一开始使用重建命令时一直报错(找不到文件)

只需要直接把 dnerf_slim.yaml 文件从config文件中复制一个到大的 HexPlane 目录下就 ok 了

可视化结果

tensorboard

先使用 conda install tensorboard 命令下载 tensorboard

只使用这一条命令即可使用

不用额外编译什么的

然后输入下面这条命令(原封不动输入就好,不需要修改什么参数)

tensorboard --logdir=../models/'seg/cls'

接着运行完之后,在浏览器中输入这网站

打开之后,再在 Windows 的 cmd 中输入下面的可视化命令

ssh -L 6006:localhost:6006 主机名

刷新网页

即可得到 loss 等参数信息

渲染视频

首先需要在目录下查找是否有蓝色字体的目录名

如有则说明渲染成功

我这边从 logs 目录开始就被隐藏了

需要把隐藏目录显示出来,直接上网搜索即可,不多赘述

点击蓝色目录名的目录

即可找到渲染成功的视频

虽然上述复现步骤非常简洁

但我复现的时候依旧踩了很多很多的坑

因为不了解代码的作用、GitHub的文件信息 

所有绝大部分时间都处于无从下手的状态

已经决定后面要多在源码上下功夫了wwwwwww

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值