自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 机器学习实验(主成分分析PCA)

PCA(Principal Component Analysis),即主成分分析,是一种用于高维数据降维的统计方法。它通过线性变换将原始的高维数据映射到低维空间,同时保留数据中的主要信息。在降维过程中,PCA通过寻找数据中的主成分(即最能代表数据特征的线性组合)来实现数据的压缩和可视化。本实验用的是鸢尾花数据集。Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例。

2024-06-18 16:58:56 839

原创 机器学习实验(支持向量机SVM)

支持向量机(Support Vector Machine, SVM)是一种广泛应用的监督学习算法,主要用于数据分类问题。它基于统计学习理论和结构风险最小化原则,通过找到一个决策超平面来最大化不同类别之间的间隔,以此来实现数据分类。

2024-06-11 15:38:43 847

原创 机器学习实验(逻辑回归)

本次实验深入学习了逻辑回归的原理与应用。逻辑回归作为一种强大的分类算法,通过线性模型与Sigmoid函数的结合,有效预测了样本属于某一类别的概率。实验过程中,我们掌握了逻辑回归的基本概念和数学原理,并通过实际数据集进行了模型训练。实验结果表明,逻辑回归在处理二分类问题时表现出色,能够准确捕捉数据中的分类信息。通过本次实验,我们加深了对逻辑回归的理解,并掌握了其在实际问题中的应用方法。...+

2024-05-28 16:59:16 948 1

原创 机器学习实验(朴素贝叶斯)

朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理与特征条件独立假设的分类方法。它起源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。朴素贝叶斯算法通过计算给定样本属于某个类别的概率,将样本分配到概率最大的类别中。由于它假设样本的特征之间是相互独立的(即朴素性假设),因此得名“朴素贝叶斯”。学习朴素贝叶斯分类器后,我深感其简洁与高效。通过理解贝叶斯定理和特征独立假设,我认识到它在文本分类中的实用性。实践中,我意识到特征选择对分类性能至关重要。

2024-05-14 16:58:45 716

原创 机器学习实验(决策树)

决策树算法,作为监督学习领域的杰出代表,通过构建决策树模型,实现了对数据的精准分类和回归预测。这种树状结构的模型,其每一个节点都承载了数据的某一特征或属性,而每个分支则映射出一个明确的决策规则。当这些规则交织在一起,最终在树的末端形成叶节点,这些叶节点则清晰地标示出了数据的类别或具体数值。

2024-04-30 16:58:14 748 1

原创 机器学习实验(k-近邻算法+模型评估)

KNN(k-近邻算法)是一种基于实例的学习,或者说基于标签的数据分类方法。这种方法会预测一个新的观察对象的类别,该类别是该对象最接近的已知对象的k个邻居中大多数出现的那一个。即k-近邻算法采用测量不同特征值之间的距离方法进行分类。模型评估(model assessment)是指对于一种具体方法输出的最终模型,使用一些指标和方法来评价它的泛化能力。模型评估一般可以分为回归、分类、聚类的任务,不同任务有不同评价指标。根据想要得到的目标值,可以把模型评估分为分类模型评估和回归模型评估。

2024-04-02 18:32:53 1081 1

原创 机器学习实验一

可以直接从官网下载vscode和Anaconda,也可以通过清华镜像网下载Anaconda(会比在官网下载的快一些)。如图,根据你电脑的系统配置选择合适的安装包。在vscode中试写一个python代码,实验完成。下载完成后,在文件中找到对应安装包安装。然后根据提示输入下图最上面四行命令。

2024-03-11 22:27:50 208

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除