可数集合与不可数集合的理解(准大学生初学者)

本文介绍了可数集合与不可数集合的区别,重点在于它们与自然数集合的一一对应关系。可数集合能够与自然数建立一一对应,比如整数集;而不可数集合则无法做到这一点,例如实数集。理解这一概念有助于我们区分这两种无限集合的性质,其中可数集合的子集可以是有限的,而不可数集合的非空子集都是无限的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理解可数集合与不可数集合,首先需要了解等势(一一对应)的概念

1e1d45bd32994934a268b54abbd17057.png

而与自然数集合等势(一一对应)的集合即为可数集合 

ed7582cf4eb24f679160850f83d81d1b.png

如:55e79492ec0e45cca015c89c6f1ecdaf.png 由上图可知可数集合不需要呈现规律递增如O+的2n+1

 

不可数集合则不能与自然数集合一一对应

bf0e064ffa2546bfaf350714874a149c.png

 不管可数集合还是不可数集合,其基数都为无限个,自然数集依次递增相当于有始无终,图中可数集合也都是有始无终,但包括负数的整数集无始无终其实也是可数集合,所以关于定义中的“一一对应”如何理解?

搜索一些例子后大概理解关于可数集合一一对应自然数集:

可数集合就像是图标中一个个点,相邻之间没有过程,而不可数集合就想是连线,可以说没有相邻的数。所以关于一一对应,可数集合可以不递增,不递减,甚至可以毫无规律

最后理解:可数集合和不可数集合,两者都是无限的,但可数集合的子集可以是有限,而不可数集合的子集除了空集都为无限的,可根据其子集判断可数集合与不可数集合

 

(个人理解,如有错误,还请老师帮忙指正)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值