理解可数集合与不可数集合,首先需要了解等势(一一对应)的概念
而与自然数集合等势(一一对应)的集合即为可数集合
如: 由上图可知可数集合不需要呈现规律递增如O+的2n+1
不可数集合则不能与自然数集合一一对应
不管可数集合还是不可数集合,其基数都为无限个,自然数集依次递增相当于有始无终,图中可数集合也都是有始无终,但包括负数的整数集无始无终其实也是可数集合,所以关于定义中的“一一对应”如何理解?
搜索一些例子后大概理解关于可数集合一一对应自然数集:
可数集合就像是图标中一个个点,相邻之间没有过程,而不可数集合就想是连线,可以说没有相邻的数。所以关于一一对应,可数集合可以不递增,不递减,甚至可以毫无规律
最后理解:可数集合和不可数集合,两者都是无限的,但可数集合的子集可以是有限,而不可数集合的子集除了空集都为无限的,可根据其子集判断可数集合与不可数集合
(个人理解,如有错误,还请老师帮忙指正)