自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(39)
  • 收藏
  • 关注

原创 机器学习 --- 贝叶斯分类算法

这篇文章主要介绍了机器学习中的贝叶斯分类算法,内容涵盖了贝叶斯理论、条件概率、全概率公式、贝叶斯推断、朴素贝叶斯推断以及拉普拉斯平滑系数等核心概念。此外,文章还通过鸢尾花数据集和葡萄酒数据集的示例,展示了贝叶斯分类算法在实际应用中的效果和操作过程。

2025-05-16 18:28:46 1128

原创 机器学习 --- 模型选择与调优

本文介绍了机器学习中模型选择与调优的常用方法,包括交叉验证和超参数搜索。交叉验证部分详细讲解了保留交叉验证(HoldOut)、K-折交叉验证(K-fold)和分层K-折交叉验证(Stratified k-fold)的原理及实现,并指出各自的优缺点。超参数搜索部分介绍了网格搜索(GridSearchCV)的使用方法,通过鸢尾花数据集示例展示了如何结合交叉验证和网格搜索来优化模型参数,最终输出最佳参数、最佳结果和预测结果。这些方法有助于提高模型的泛化能力和预测准确性。

2025-05-15 14:04:53 1148

原创 机器学习 --- KNN算法

KNN(K-近邻)算法是一种基于距离度量的分类算法,通过计算测试样本与训练样本的距离,选择K个最近邻样本,根据其多数类别判断测试样本的类别。KNN算法简单易用,但存在计算量大、高维数据效果差等缺点。使用sklearn库中的KNeighborsClassifier可以轻松实现KNN算法。本文以鸢尾花数据集为例,展示了KNN算法的完整流程,包括数据加载、标准化、模型训练、评估和预测。通过训练和测试,模型准确率达到93.3%,并保存了模型用于后续推理。KNN算法适用于小规模数据集,但在处理大规模或高维数据时需谨慎

2025-05-15 13:30:10 572

原创 机器学习 --- 特征工程(二)

本文介绍了机器学习中的特征工程,重点讨论了无量纲化和特征降维。无量纲化通过归一化和标准化处理,消除不同特征之间的量纲差异,常用的方法包括MinMaxScaler、normalize和StandardScaler。归一化将数据映射到指定区间,而标准化通过Z-score将数据转换为均值为0、标准差为1的分布。特征降维则通过特征选择和主成分分析(PCA)减少数据维度,降低计算成本并去除噪声。特征选择中的低方差过滤法通过去除方差较小的特征,保留信息量较大的特征,从而提升模型效果。

2025-05-14 23:51:35 825

原创 机器学习 --- 特征工程(一)

特征工程是机器学习中处理特征的关键步骤,旨在将原始数据转换为适合模型训练的数字特征。其核心步骤包括特征提取、无量纲化(如归一化和标准化)和降维(如主成分分析)。常用的API包括DictVectorizer(字典特征提取)、CountVectorizer(文本特征提取)、TfidfVectorizer(TF-IDF特征提取)等。特征工程通过转换器对象(如fit_transform)实现数据转换,稀疏矩阵和稠密矩阵是其常见的存储形式。对于中文文本,通常使用jieba进行分词处理。TF-IDF算法通过词频和逆文档

2025-05-13 17:56:43 1149

原创 机器学习 --- 数据集

本文介绍了机器学习中数据集的分类与加载方法。首先,sklearn数据集分为本地数据集和现实世界数据集,前者数据量小且存储在本地,后者数据量大且需通过网络获取。接着,详细展示了如何加载鸢尾花、糖尿病和葡萄酒等经典数据集,并使用pandas将特征与目标数据整合为DataFrame。此外,还介绍了如何获取现实世界数据集,如20分类新闻数据,并演示了如何加载本地CSV文件。最后,通过示例展示了如何使用train_test_split函数对列表和DataFrame数据集进行划分,以便进行模型训练与测试。

2025-05-13 17:09:28 990

原创 机器学习 --- 介绍与定义

机器学习的介绍与定义,机器学习的发展历史,机器学习分类,机器学习应用场合,机器学习趋势分析,机器学习工具

2025-05-12 13:34:22 883

原创 OpenCV---图像预处理 (十)

本文介绍了OpenCV中的图像预处理技术,主要包括图像亮度变换和形态学变换。亮度变换通过调整像素值来改变图像的整体亮度或对比度,常用的方法包括线性变换和直接像素值修改。形态学变换则基于形状对二值化图像进行处理,核心操作包括腐蚀、膨胀、开运算、闭运算、礼帽运算、黑帽运算和形态学梯度。这些操作通过使用核(结构化元素)对图像进行滑动处理,能够有效分离物体、消除噪点、填充孔洞或突出边缘特征。具体实现中,OpenCV提供了如cv2.addWeighted()、cv2.dilate()、cv2.morphologyEx

2025-05-09 22:20:43 932

原创 OpenCV --- 图像预处理(九)

模版匹配,霍夫变换

2025-04-27 15:16:41 1154

原创 OpenCV --- 图像预处理(八)

直方图均衡化,自适应直方图均衡化,对比度受限的自适应直方图均衡化

2025-04-26 18:42:17 823

原创 OpenCV --- 图像预处理(七)

图像轮廓查找,外接矩形,最小外接矩形,最小外接圆

2025-04-26 18:37:55 1282

原创 OpenCV --- 图像预处理(六)

图像边缘检测,绘制图像轮廓,凸包特征检测

2025-04-22 17:01:24 1630

原创 OpenCV --- 图像预处理(五)

图像噪点消除,包括,均值滤波,方框滤波,高斯滤波,中值滤波,双边滤波。图像梯度处理,包括,垂直边缘提取,sobel算子,laplacian算子

2025-04-22 16:14:34 938

原创 OpenCV---图像预处理(四)

图像掩膜,ROI切割,图像添加水印

2025-04-21 17:46:13 1375

原创 OpenCV --- 图像预处理(三)

对于彩色图像的每个像素,它会按照一定的权重去乘以每个通道的像素值,并将其相加,得到最后的值就是灰度图像中对应位置的像素值。阈值法就是通过设置一个阈值,将灰度图中的每一个像素值与该阈值进行比较,小于等于阈值的像素就被设置为0(通常代表背景),大于阈值的像素就被设置为maxval(通常代表前景)。反阈值法是当灰度图的像素值大于阈值时,该像素值将会变成0(黑),当灰度图的像素值小于等于阈值时,该像素值将会变成maxval。本身并不是一个独立的阈值化方法,而是与 OpenCV 中的二值化方法结合使用的一个标志。

2025-04-16 17:37:17 825 2

原创 OpenCV--图像预处理(二)

边缘填充,边界复制,边界反射,边界反射101,边界,常数,边界包裹,图像色彩空间,rgb颜色空间,颜色加权,hsv颜色空间

2025-04-16 16:34:48 1210

原创 OpenCV ---图像预处理(一)

图像预处理,图像的翻转,图像的仿射变换,插值方法

2025-04-15 18:25:52 826

原创 OpenCV---图像基础

OpenCV(开放源代码计算机视觉库)是一个开源的计算机视觉和机器学习软件库。由一系列 C++ 类和函数构成,用于图像处理、计算机视觉领域的算法实现。

2025-04-15 17:15:25 1123

原创 python三大库之---pandas(二)

常用的函数,重置索引,遍历,排序,去重,分组,合并,随机抽样,空值处理,读取csv文件,绘图

2025-04-06 21:48:20 2661 3

原创 python三大库之---pandas(一)

Pandas 是一个开源的第三方 Python 库,从 Numpy 和 Matplotlib 的基础上构建而来Pandas 是 Python 语言的一个扩展程序库,用于数据分析Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算)Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。

2025-04-03 10:00:02 1230

原创 python三大库之---matplotlib

pylab 是 matplotlib 中的一个模块,它将 matplotlib.pyplot 和 numpy 的功能组合在一起,使得你可以直接使用 numpy 的函数和 matplotlib.pyplot 的绘图功能,而不需要显式地导入 numpy 和 matplotlib.pyplot。add_subplot 是一个更灵活的函数,它是 Figure类的一个方法,用于向图形容器中添加子图。‘b’:蓝色 ‘g’:绿色 ‘r’:红色 ‘c’:青色 ‘m’:洋红色 ‘y’:黄色 ‘k’:黑色 ‘w’:白色。

2025-03-31 09:55:35 2041

原创 python三大库之-- numpy(三)

数组操作,数组增删查改,统计函数

2025-03-29 19:13:14 1269

原创 python三大库之--numpy(二)

广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。这要求维数相同,且各维度的长度相同,如果不相同,可以通过广播机制,这种机制的核心是对形状较小的数组,在横向或纵向上进行一定次数的重复,使其与形状较大的数组拥有相同的维度。NumPy 中的高级索引指的是使用整数数组、布尔数组或者其他序列来访问数组的元素。相比于基本索引,高级索引可以访问到数组中的任意元素,并且可以用来对数组进行复杂的操作和修改。:返回的新数组是一个。

2025-03-28 23:17:06 526

原创 python三大库之--numpy(一)

NumPy 数组是同质数据类型(homogeneous),即数组中的所有元素必须是相同的数据类型。Python 列表是异质数据类型(heterogeneous),即列表中的元素可以是不同的数据类型。它类似于 Python 内置的 range() 函数,但返回的是一个 NumPy 数组而不是一个列表。如果使用shape属性修改数组的形状,则修改的是原数组的形状,reshape修改数组的形状会返回一个新数组,不修改原数组的形状。是 NumPy 数组的一个属性,用于返回数组的维度数(即数组的秩)。

2025-03-28 18:29:04 1048

原创 python基础之---正则表达式

正则表达式在网络爬虫、数据分析中有着广泛使用,掌握正则表达式能够达到事半功倍的效果。

2025-03-25 10:05:46 937

原创 python基础之--包和模块

定义一个model1模块print(year, "是闰年")else:print(year, "不是闰年")returnyear = int(input("请输入年份:"))用户自己编写的模块,用于复用代码。文件名以py.pypy结尾,存放自定义的函数、类等。model1,用于判定是否为闰年和加减法工具,可以直接调用print(year, "是闰年")else:print(year, "不是闰年")returnyear = int(input("请输入年份:"))分类。

2025-03-25 00:15:00 969

原创 python基础之--迭代器和生成器及异常处理

自己设计一个可迭代对象# 类中实现了 __iter__ 和__next__ 方法 用这个类创建的对象 就是可迭代对象# __iter__方法:1.要求返回一个可迭代对象 2.iter函数调用传入b1对象 其实就会调用__iter__返回这个可迭代对象# __next__函数要求返回数据 使用next函数调用时传入迭代器对象 就会执行这个__next__函数class Box:else:b1=Box(6)print(i)class Box:self.a=0self.a+=1。

2025-03-24 14:31:39 973

原创 python基础之--面相对象--OOP基本特性

OOP的四大基本特性是,以及super函数

2025-03-24 11:55:09 1306

原创 python基础之---面向对象--属性和方法

类的属性和方法是类的核心组成部分,它们用于定义类的状态和行为。对象的方法内部 可以使用 这个对象的属性和方法。对象调用一次类,每次都不同。对象的方法 可以传入参数。

2025-03-20 09:57:03 409

原创 python基础之---函数式编程

回调函数,闭包,闭包案例,装饰器。

2025-03-19 15:36:14 1709

原创 python基础之---函数

函数,使用def 语句定义一个函数a#函数#定义一个函数def kn1():kn1()#运行函数内部的代码kn1print(a+b)kn2(1,2)3函数的返回值,return#函数的返回值,returnreturn a+bprint(re)3。

2025-03-16 01:41:05 1192

原创 python基础之---语句

循环语句用于重复执行一段代码,直到满足某个条件。语句是计算机执行程序的最小单位。赋值语句将一个值赋给变量。使用for循环对应索引。

2025-03-15 00:28:31 552

原创 python基础之---运算符

表达式(expression)是由一个或多个操作数和运算符组成的。简单来说,表达式可以是任何会产生一个值的代码片段。用于比较两个对象的身份(即是否是同一个对象),返回布尔值。用于比较两个值并返回布尔值 True 或 False。not in:判断值是否不存在于序列中。用于检查一个值是否在序列、集合或字典中。用于检查一个值是否是某个集合的成员。表达式,根据条件选择两个值之一。用于比较两个值,通常返回布尔值。将一个值赋给一个变量,通常用。用于连接布尔值,返回布尔值。用于连接布尔值并返回布尔值。

2025-03-14 14:41:41 1050

原创 python基础变量之---集合

在Python中,集合(set)是一种无序的、不重复的数据结构,用于存储唯一的元素,支持数学集合的一些操作,如交集、并集、差集等。集合中的元素是无序的,即不记录元素的插入顺序,且每个元素只能出现一次,集合可以通过大括号{}或set()函数来创建,集合的元素必须是可哈希的(不可变的),例如数字、字符串、元组等,但列表、字典等可变类型不能作为集合的元素集合是可变的容器,固定集合是不可变的集合集合相当于只有键没有值的字典,当然你也可以理解为键和值相等集合内的数据都是唯一的,不可变的。

2025-03-13 10:02:08 1328

原创 python基础变量之---字典

字典是可变容器,可存储任意类型对象字典以键(key)-值(value)对的形式进行映射,键值对用冒号分割,对之间用逗号分割字典的数据是无序的字典的键只能用不可变类型,且不能重复字典的数据用键进行索引,不能用整数进行索引。

2025-03-13 09:07:28 463

原创 python基础变量之---元组

元组(tuple)是 Python 中的一种数据结构,用于存储多个元素。与列表(List)类似,但元组是不可变的,一旦创建就不能修改。元组中的元素可以是不同类型的数据,如整数、浮点数、字符串等。元组使用圆括号 () 定义,元素之间用逗号分隔。

2025-03-12 16:16:17 255

原创 python基础变量之---列表

列表是一种动态数组,可以存储不同类型的数据(如整数、字符串、对象等),并且支持动态扩展和收缩。例如。

2025-03-11 13:48:42 632

原创 python基础之变量---总纲

python基础方面关于变量的简单理解

2025-03-10 09:45:21 1132

原创 Python基础之Python环境搭建

我们了解了python的基础环境配置,分别在conda环境下,vscode的编辑器以及pycharm编辑器中进行python环境配置,以及各种相关依赖的安装

2025-03-08 23:05:30 775 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除