自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(75)
  • 收藏
  • 关注

原创 自然语言处理 --- 特征工程

摘要:本文介绍了词向量及其在自然语言处理中的重要性,对比了传统特征工程方法(如独热编码、TF-IDF和n-grams)与词嵌入技术的差异。词向量通过将词语映射为数值向量,能够捕捉语义关系,支持计算推理。传统方法如独热编码简单但稀疏,TF-IDF通过词频加权提升特征重要性,n-grams则捕捉局部上下文。词嵌入技术(如Word2Vec)通过稠密向量表示词语,更高效且能表达复杂语义关系。文章还探讨了如何结合n-grams与TF-IDF优化文本特征表示。

2025-08-25 20:20:59 1063

原创 自然语言处理 --- 基础知识

自然语言处理(NLP)是人工智能领域的重要分支,旨在实现计算机与人类语言之间的交互。它结合计算机科学、人工智能和语言学技术,主要目标包括语言理解、生成、翻译、情感分析等。NLP在中文环境面临分词、语法分析等特殊挑战。其应用涵盖自然语言理解(NLU)、转换(NLT)和生成(NLG)三大方向,涉及情感分析、文本分类、机器翻译、语音识别等任务。常用数据集包括SST-2、THUCNews、WMT14等,规模从数千到数百万不等,支持中英文等多种语言处理。NLP技术正逐步缩小人机交流的鸿沟。

2025-08-25 20:19:23 908

原创 YOLO --- YOLO11模型以及项目详解

YOLO11模型详解:改进的骨干网络架构与注意力机制优化 摘要:YOLO11是通过引入C3K2轻量级残差模块和C2PSA注意力机制模块,显著提升了特征提取能力。该模型采用FPN+PAN结构进行多尺度特征融合,并在检测头中增加深度可分离卷积。相比前代YOLOv8,YOLO11m在COCO数据集上实现了更高的mAP(50-95)精度,同时参数减少22%。模型支持多种计算机视觉任务,包括目标检测、实例分割等,可部署在边缘设备和云平台。文章详细解析了网络结构、关键模块设计原理及性能对比数

2025-08-22 18:37:39 1946

原创 YOLO --- YOLOv5模型以及项目详解

YOLOv5是Ultralytics公司于2020年6月发布的开源目标检测项目,其核心特点包括:采用改进的CSPDarknet53主干网络,初始使用Focus模块进行高效下采样(后改为常规卷积),颈部网络结合PANet和FPN结构,激活函数使用SiLU/Swish,并采用CloU损失函数。项目提供详细的网络结构解析(如CSP1_X、CSP2_X、Bottleneck、C3模块等)和优化技巧(如SPPF模块的串行并行改进)。安装部署简单,支持GitHub/Gitee下载,需Python≥3.8和PyTorch

2025-08-22 18:35:08 940

原创 YOLO --- YOLOv3以及YOLOv4模型详解

YOLOv3和YOLOv4模型详解: YOLOv3采用Darknet-53主干网络,通过特征层融合和多尺度预测实现目标检测。其核心创新包括: 多尺度特征融合(FPN思想),通过上采样和下采样结合concat操作增强特征表达能力; 三个不同尺度的输出层(13×13/26×26/52×52)分别检测大/中/小目标; 使用二元交叉熵损失实现多标签分类。 YOLOv4在YOLOv3基础上引入: CSPDarknet53主干网络; PANet特征金字塔结构; 自适应训练和Mish激活函数等优化。 两代模型均保持实时检

2025-08-21 15:09:49 935

原创 YOLO --- YOLOv1以及YOLOv2模型详解

YOLOv1是首个单阶段目标检测模型,将检测任务转化为回归问题,实现端到端的预测。该模型将输入图像划分为7×7网格,每个网格预测2个边界框及其置信度,以及20类概率。损失函数结合定位误差、置信度误差和分类误差,采用平方差损失进行优化。YOLOv1以45FPS的速度实现实时检测,但定位精度较低,尤其对小目标检测效果欠佳。其创新性在于将目标检测视为单一回归问题,简化了传统两阶段检测流程,为后续YOLO系列模型奠定了基础。

2025-08-21 15:08:14 1020

原创 YOLO --- 目标检测基础

本文介绍了目标检测的基础概念、技术架构及关键指标。主要内容包括:1)目标检测定义及面临的挑战;2)标注方法(边界框标注);3)与图像分类、分割任务的对比;4)在自动驾驶、安防等领域的应用场景;5)技术架构分类(单阶段与双阶段检测方法);6)关键评估指标如边界框和交并比(IoU)。文章还提供了YOLO等主流算法的对比分析,帮助读者快速掌握目标检测的核心知识要点。

2025-08-19 17:55:00 1364

原创 深度学习 --- 基于ResNet50的野外可食用鲜花分类项目代码

本文介绍了一个基于ResNet50的野外可食用鲜花分类项目,主要包含以下内容: 项目结构:提供了数据集链接和项目目录结构 核心模块: CBAM注意力机制模块实现(通道+空间注意力) ONNX模型导出和推理代码 功能实现: 权重转换:将PyTorch模型导出为ONNX格式 图像分类:支持中文/英文类别映射 性能评估:提供推理耗时统计 特色: 包含61种可食用植物的分类能力 中英双语标签支持 完整的预处理和推理流程 项目采用ResNet50作为基础网络,结合CBAM注意力机制提升分类性能,适用于野外可食用植物识

2025-08-19 17:49:28 441

原创 深度学习 --- 基于ResNet50的野外可食用鲜花分类项目

本项目基于ResNet50模型构建了一个50类野外可食用植物的智能识别系统。通过迁移学习结合CBAM注意力机制,模型在Kaggle数据集上实现了高效分类(8:2划分训练验证集)。训练过程采用Adam优化器和交叉熵损失,最终验证准确率达97.5%,并部署为网页应用。项目创新点包括数据增强、模型微调以及ONNX格式移植,解决了野外植物快速识别难题,为生态监测和野外生存提供了实用工具。

2025-08-18 11:30:19 759

原创 深度学习 --- 基于MobileNetV3 实现的花卉识别

本文介绍了基于MobileNetV3实现的花卉识别系统。文章详细阐述了MobileNetV3的网络结构实现,包括核心模块如ConvBNActivation、SqueezeExcitation和InvertedResidual等。MobileNetV3作为一种轻量级网络,通过深度可分离卷积和注意力机制在保证精度的同时减少计算量。文中给出了完整的PyTorch实现代码,展示了如何构建倒残差结构和调整通道数,最后通过分类头输出预测结果。该实现适用于图像分类任务,特别是对计算资源有限的移动端部署场景具有优势。

2025-08-18 11:28:20 423

原创 深度学习 --- MobileNet神经网络

MobileNet:轻量级神经网络新标杆 摘要:MobileNet是谷歌团队专为移动和嵌入式设备设计的高效深度学习模型,通过创新性的深度可分离卷积技术,在保持较高准确率的同时大幅降低计算成本和参数量。相比传统卷积神经网络,MobileNet将VGG16的参数量减少了97%,计算量降低为1/9,而准确率仅下降0.9%。深度可分离卷积采用"空间-通道分离"的设计理念,先进行深度卷积提取空间特征,再用1×1逐点卷积完成通道特征融合,实现参数和计算量的指数级下降。MobileNet系列(V1/V

2025-08-14 16:14:25 1181

原创 深度学习 --- ResNet神经网络

ResNet神经网络通过残差结构解决了深度网络训练中的梯度消失和退化问题,显著提升了图像分类性能。其核心创新在于引入残差块,通过快捷连接直接传递输入信号,使得深层网络能够有效训练。ResNet包括18层到152层等多种架构,广泛应用于计算机视觉任务。实验表明,ResNet在花卉识别等任务中表现出色,验证了其高效性和实用性。

2025-08-14 16:13:30 1415

原创 深度学习 --- 基于GoogleNet的花卉识别

本文实现了一个基于GoogleNet的花卉识别深度学习模型。模型采用GoogleNet架构,包含多个Inception模块和辅助分类器,用于5类花卉图像分类。主要构建了BasicConv2d基础卷积层和Inception模块,通过堆叠卷积、池化等操作提取特征。模型支持权重初始化,并包含dropout层防止过拟合。正向传播过程中,训练时使用辅助分类器提升性能,测试时仅保留主分类器输出。该模型实现了图像分类的经典深度学习方法,适用于小规模花卉识别任务。

2025-08-13 19:09:55 205

原创 深度学习 --- VggNet以及GoogleNet神经网络

本文介绍了两种重要的深度神经网络结构:VGGNet和GoogleNet。VGGNet由牛津大学提出,通过堆叠小卷积核增加网络深度,在2014年ILSVRC竞赛中表现优异,但存在计算资源消耗大的缺点。GoogleNet(Inception-v1)则采用创新的Inception模块,通过并行多尺度卷积提取特征,有效降低了参数量,在相同竞赛中获得第一名。文章详细分析了两者的网络结构、技术特点及代码实现,对比了各自优缺点,为深度学习模型选择提供了参考依据。

2025-08-13 19:09:02 1228

原创 深度学习 --- 基于AlexNet的花卉识别

本文介绍了一个基于AlexNet架构的花卉图像分类系统实现。系统分为模型构建(model.py)和训练(train.py)两部分。模型采用经典AlexNet架构,包含5个卷积层和3个全连接层,使用ReLU激活函数和Dropout正则化。训练过程使用80%数据作为训练集,20%作为验证集,采用随机裁剪、水平翻转等数据增强技术,交叉熵损失函数和Adam优化器。模型在GPU环境下训练10个epoch,保存最佳准确率的模型参数。该系统实现了对5类花卉(雏菊、蒲公英、玫瑰、向日葵、郁金香)的分类识别,并输出类别索引映

2025-08-12 13:56:46 258

原创 深度学习 --- LeNet以及AlexNet神经网络

本文介绍了深度学习中两个里程碑式的卷积神经网络:LeNet和AlexNet。LeNet由Yann LeCun于1998年提出,是首个成功应用于手写数字识别的7层网络(3卷积+2池化+2全连接),采用Sigmoid激活函数。AlexNet在2012年ImageNet竞赛中夺冠,开创了深度学习新纪元。这个8层网络(5卷积+3全连接)首次使用ReLU激活函数、GPU并行训练和局部响应归一化(LRN),显著提升了性能。文章详细解析了两者的网络结构、参数计算方式,并提供了LeNet的PyTorch实现代码,展示了深度

2025-08-12 13:36:22 761

原创 深度学习 --- 迁移学习以及onnx推理

摘要 本文介绍了深度学习中的迁移学习方法,以ResNet18为例展示了预训练模型的加载、权重调整和微调过程。主要内容包括:1) 使用torchvision加载预训练的ResNet18模型及其权重;2) 修改网络结构以适应10分类任务;3) 处理权重文件,删除不匹配的全连接层参数;4) 在CIFAR10数据集上训练调整后的模型,包含数据增强、损失计算和优化器配置;5) 训练过程可视化及模型保存。文章提供了完整的代码实现,展示了如何利用预训练模型进行迁移学习,提高模型训练效率和性能。

2025-08-11 18:35:31 851

原创 深度学习 --- 模型优化以及模型参数可视化

本文介绍了深度学习模型优化及可视化的关键技术。主要内容包括:1)获取开源数据集的多个途径(PyTorch、Kaggle等);2)数据本地化处理方法(图片保存、序列化);3)过拟合处理方案(数据增强、标准化、Drop-out);4)训练过程可视化工具TensorBoard的使用方法(安装配置、训练曲线记录、模型结构保存);5)验证结果数据化(将推理结果保存为Excel格式)。文章提供了完整的代码示例,帮助开发者实现模型训练过程的可视化监控和效果分析。

2025-08-06 17:18:53 848

原创 深度学习 --- 卷积神经网络基础(二)

本文介绍了卷积神经网络的几种重要变体结构。反卷积通过转置卷积核实现上采样,用于恢复图像尺寸;膨胀卷积通过插入空格扩大感受野;可分离卷积分为空间可分离和深度可分离两种,后者通过1×1卷积减少计算量;分组卷积将输入通道分组并行处理,提升效率。文章通过图示和代码示例展示了各结构的计算过程,并分析了参数效率,指出小卷积核堆叠既能保持特征提取能力又能减少参数数量。这些结构扩展了CNN的应用场景,为网络设计提供了更多灵活性。

2025-08-05 17:10:40 852

原创 深度学习 -- 卷积神经网络基础(一)

卷积神经网络(CNN)是一种受生物学启发的深度学习模型,通过局部连接、权重共享和池化等特性,能够有效处理图像数据。相比全连接神经网络,CNN具有参数少、计算效率高、能够提取局部不变性特征等优势。文章详细介绍了卷积运算的原理(包括步长、填充等操作)、权值共享机制以及池化操作(最大池化和平均池化),并通过代码示例展示了二维卷积的实现过程。这些特性使CNN在图像处理任务中表现出色,具有平移、缩放和旋转不变性。

2025-08-04 14:54:40 935

原创 使用全连接神经网络训练和预测MNIST以及CIFAR10

这篇文章摘要总结了使用全连接神经网络(FCNN)训练和预测MNIST手写数字数据集以及CIFAR10数据集的完整流程。内容包括:1)数据准备与加载,2)神经网络架构构建(包含3个全连接层和批归一化),3)训练过程实现(使用交叉熵损失和Adam优化器),4)验证方法,5)模型保存与加载,6)测试预测功能。同时文章也展示了类似流程在CIFAR10数据集上的应用,包含数据增强技术如随机翻转和旋转。代码实现完整,涵盖从数据预处理到模型部署的各个环节,并考虑了GPU加速支持。

2025-08-01 17:07:55 684

原创 深度学习 --- 批量标准化以及模型保存和加载

批量标准化(Batch Normalization)是深度学习中重要的正则化技术,通过在每层输入上执行标准化操作来加速训练并提高模型稳定性。其核心步骤包括计算批次均值和方差、标准化处理、以及可学习的缩放和平移。BN在训练阶段使用当前批次统计量,测试阶段则依赖全局统计量以保证一致性。相比无BN的网络,BN能缓解梯度问题、允许更大学习率、减少过拟合,并显著提升训练速度和模型性能。实验表明带BN的网络在收敛速度和准确率上均有优势。

2025-07-31 15:39:07 724

原创 深度学习 --- 过拟合与欠拟合

深度学习模型中的过拟合与欠拟合问题及解决方法 摘要:本文介绍了深度学习中常见的过拟合和欠拟合问题。过拟合表现为训练误差低但测试误差高,通常由数据量不足、模型复杂度过高或正则化不足引起;欠拟合则是模型无法充分学习数据特征,表现为训练和测试误差均高。解决欠拟合的方法包括增加模型复杂度、添加特征、减少正则化强度等。针对过拟合问题,重点介绍了L1和L2正则化技术,其中L2正则化通过惩罚权重平方和来限制模型复杂度,L1正则化则能产生稀疏权重。文章还提供了使用PyTorch实现L2正则化的代码示例,并通过训练损失曲线对

2025-07-30 19:47:56 1046

原创 深度学习 --- 反向传播算法

深度学习中的反向传播算法简介 本文介绍了深度学习中的核心算法——反向传播(Backpropagation)。主要内容包括: 前向传播过程:详细阐述了神经网络从输入层到输出层的计算步骤,包括线性变换和激活函数应用,并给出了三层神经网络的前向传播公式。 梯度下降算法:作为反向传播的基础,讲解了梯度下降的原理、数学公式和实现步骤,重点分析了学习率的选择策略及其对训练的影响。 两种梯度下降变体:对比了批量梯度下降(BGD)和随机梯度下降(SGD)的优缺点,BGD使用全量数据计算梯度但计算量大,SGD每次仅用单个样本

2025-07-28 10:21:44 567

原创 深度学习 ---参数初始化以及损失函数

深度学习参数初始化与损失函数摘要 参数初始化是深度学习模型训练的关键步骤,对训练速度和性能有重要影响。固定值初始化(全0、全1或常数)会导致对称性问题,降低模型表达能力,通常不推荐使用。随机初始化(均匀或正态分布)能打破对称性,加速收敛,但需合理选择初始化范围以避免梯度问题。不同激活函数需要匹配的初始化策略(如ReLU适合He初始化,Sigmoid/Tanh适合Xavier初始化)。实际应用中,小范围随机初始化是主流方法,需根据网络深度和激活函数调整参数分布。

2025-07-22 20:14:48 456

原创 深度学习 --- 激活函数

深度学习中的激活函数 本文系统介绍了神经网络中激活函数的作用和常见类型。激活函数通过引入非线性特性,使神经网络能够学习和表达复杂的函数关系,增强其非线性建模能力。 文章首先分析了不使用激活函数时,多层神经网络等价于单层线性模型的局限性。随后重点介绍了两种经典激活函数: Sigmoid函数:将输入映射到(0,1)区间,适合概率输出,但存在梯度消失和计算成本高的问题 Tanh函数:输出范围(-1,1),零中心化特性有利于收敛,但仍面临梯度消失问题 文章通过数学公式和Python代码演示了这两种函数的特性曲线和导

2025-07-22 20:07:32 962

原创 深度学习 ---神经网络以及数据准备

深度学习是机器学习的一个分支,通过多层神经网络处理复杂的数据模式。本文介绍了深度学习的基本概念、神经网络结构、数据准备方法以及PyTorch实现。 主要内容包括: 深度学习简介及其在图像处理、NLP等领域的应用 神经网络基本原理,包括人工神经元模型和全连接网络结构 数据准备方法,包括自定义Dataset类和DataLoader的使用 PyTorch实现示例,展示了如何构建全连接神经网络 文章提供了完整的代码实现,包括神经网络构建、数据加载和批处理功能。通过TensorDataset和DataLoader可以

2025-07-21 20:13:32 1231 2

原创 深度学习 -- 梯度计算及上下文控制

本文介绍了PyTorch中的自动微分和梯度计算相关内容。主要内容包括: 自动微分基础概念: 张量的requires_grad属性控制是否计算梯度 计算图动态跟踪张量操作 叶子节点与非叶子节点区分 梯度计算方法: 标量梯度计算 向量梯度计算及推导过程 多标量和多向量梯度计算 梯度上下文控制: 使用torch.no_grad()控制梯度计算 梯度累加特性及清零方法 应用案例: 使用梯度下降法求函数最小值 线性回归参数求解实现 文章通过代码示例详细展示了PyTorch自动微分机制的核心功能和使用方法,为神经网络训

2025-07-21 19:10:57 792

原创 深度学习 -- Tensor属性及torch梯度计算

本文介绍了PyTorch中Tensor的基本操作,主要包括两部分内容:1)Tensor与Numpy数组的相互转换,包括浅拷贝和深拷贝的实现方式;2)Tensor常见操作,如获取元素值和基本数学运算。文章通过代码示例展示了如何使用numpy()和from_numpy()实现内存共享的转换,以及item()方法获取单个元素值,同时说明了带有下划线的方法会直接修改原始Tensor值的特点。这些操作是深度学习中使用PyTorch进行数据处理的基础。

2025-07-17 20:21:59 307

原创 深度学习 -- 初步认识Torch

本文介绍了深度学习框架PyTorch的基础知识。首先阐述了人工智能的本质是数学计算,需要数据、网络和算力三要素共同实现。PyTorch作为基于Python的深度学习框架,提供了张量运算、自动微分和GPU加速等功能。 文章详细讲解了Tensor的创建方法(torch.tensor和torch.Tensor的区别)、线性张量生成(arange和linspace)以及随机张量生成(设置随机数种子保证可复现性)。同时介绍了Tensor的重要属性(dtype、shape、device等)和如何在CPU与GPU之间切换

2025-07-17 19:26:15 1040

原创 机器学习 -- 逻辑回归以及K-means算法

摘要 本文介绍了两种重要的机器学习算法:逻辑回归和K-means聚类。逻辑回归虽然名称包含"回归",但实际上是一种广泛应用于二分类问题的分类算法,其核心是通过sigmoid函数将线性回归输出转换为概率值。K-means是一种无监督学习算法,通过迭代优化将数据划分为K个簇,追求"簇内差异小,簇外差异大"的目标。文章详细阐述了两种算法的基本原理、API接口和实现示例,包括逻辑回归的损失函数计算和K-means的质心更新过程,并通过Python代码展示了实际应用效果。两种算

2025-07-08 15:07:52 1187

原创 机器学习 -- 拟合以及正则化技术

机器学习中的拟合与正则化技术 摘要:机器学习模型常面临欠拟合和过拟合问题。欠拟合指模型过于简单无法捕捉数据模式,表现为训练和测试误差均较高;过拟合则是模型过于复杂导致泛化能力差,训练误差低但测试误差高。正则化技术通过添加惩罚项(L1或L2)来平衡模型复杂度,提高泛化能力。L2正则化的岭回归(Ridge)通过缩小权重系数来防止过拟合,适用于特征共线性情况;L1正则化的拉索回归(Lasso)则能将部分权重压缩为零,实现特征选择。两种方法均可有效提升模型鲁棒性,具体选择取决于数据特点和需求。

2025-07-08 15:07:15 606

原创 机器学习 -- 梯度下降

梯度下降

2025-07-07 09:11:55 1125

原创 机器学习 -- 线性回归

线性回归具体内容

2025-07-07 09:10:49 507

原创 机器学习 -- 集成学习方法之随机森林

机器学习集成学习方法之随机森林

2025-07-06 10:46:06 298

原创 机器学习 -- 决策树分类

摘要 决策树是一种监督学习算法,通过树形结构对数据进行分类。主要组成部分包括决策节点(进行条件判断)、叶子节点(最终决策结果)和树的深度(最大层次数)。决策树具有可视化强、解释性好、计算需求低的优点,但也容易过拟合。 构建方法包括基于信息增益和基尼指数两种。信息增益衡量属性区分数据的能力,计算公式为H(D)-H(D|A),信息熵越大不确定性越高。基尼指数评估数据集纯度,越小表示纯度越高,计算式为1-∑p_k²。决策树通过递归选择最小化基尼指数的分割点来构建。 实际应用中,需权衡树深度与过拟合风险,选择最优划

2025-07-06 10:30:57 1005

原创 机器学习 --- 贝叶斯分类算法

这篇文章主要介绍了机器学习中的贝叶斯分类算法,内容涵盖了贝叶斯理论、条件概率、全概率公式、贝叶斯推断、朴素贝叶斯推断以及拉普拉斯平滑系数等核心概念。此外,文章还通过鸢尾花数据集和葡萄酒数据集的示例,展示了贝叶斯分类算法在实际应用中的效果和操作过程。

2025-05-16 18:28:46 1251

原创 机器学习 --- 模型选择与调优

本文介绍了机器学习中模型选择与调优的常用方法,包括交叉验证和超参数搜索。交叉验证部分详细讲解了保留交叉验证(HoldOut)、K-折交叉验证(K-fold)和分层K-折交叉验证(Stratified k-fold)的原理及实现,并指出各自的优缺点。超参数搜索部分介绍了网格搜索(GridSearchCV)的使用方法,通过鸢尾花数据集示例展示了如何结合交叉验证和网格搜索来优化模型参数,最终输出最佳参数、最佳结果和预测结果。这些方法有助于提高模型的泛化能力和预测准确性。

2025-05-15 14:04:53 1192

原创 机器学习 --- KNN算法

KNN(K-近邻)算法是一种基于距离度量的分类算法,通过计算测试样本与训练样本的距离,选择K个最近邻样本,根据其多数类别判断测试样本的类别。KNN算法简单易用,但存在计算量大、高维数据效果差等缺点。使用sklearn库中的KNeighborsClassifier可以轻松实现KNN算法。本文以鸢尾花数据集为例,展示了KNN算法的完整流程,包括数据加载、标准化、模型训练、评估和预测。通过训练和测试,模型准确率达到93.3%,并保存了模型用于后续推理。KNN算法适用于小规模数据集,但在处理大规模或高维数据时需谨慎

2025-05-15 13:30:10 663

原创 机器学习 --- 特征工程(二)

本文介绍了机器学习中的特征工程,重点讨论了无量纲化和特征降维。无量纲化通过归一化和标准化处理,消除不同特征之间的量纲差异,常用的方法包括MinMaxScaler、normalize和StandardScaler。归一化将数据映射到指定区间,而标准化通过Z-score将数据转换为均值为0、标准差为1的分布。特征降维则通过特征选择和主成分分析(PCA)减少数据维度,降低计算成本并去除噪声。特征选择中的低方差过滤法通过去除方差较小的特征,保留信息量较大的特征,从而提升模型效果。

2025-05-14 23:51:35 866

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除