一只小蒟蒻备考蓝桥杯的日志
笔记
回溯 + DFS
回溯可以用栈,也可以用递归,以递归为例
参考 DFS (深度优先搜索) 算法详解 + 模板 + 例题,这一篇就够了
模板
int a[510]; //存储每次选出来的数据
int book[510]; //标记是否被访问
int ans = 0; //记录符合条件的次数
void DFS(int cur){
if(cur == k){ //k个数已经选完,可以进行输出等相关操作
for(int i = 0; i < cur; i++){
printf("%d ", a[i]);
}
ans++;
return ;
}
for(int i = 0; i < n; i++){ //遍历 n个数,并从中选择k个数
if(!book[i]){ //若没有被访问
book[i] = 1; //标记已被访问
a[cur] = i; //选定本数,并加入数组
DFS(cur + 1); //递归,cur+1
book[i] = 0; //释放,标记为没被访问,方便下次引用
}
}
}
案例 n皇后
P1219 [USACO1.5] 八皇后 Checker Challenge
小蒟蒻的TLE demo(仅最后一个TLE
#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std;
int arr[15][15];
//arr行列从1开始
int N, cnt = 0;
bool is_alright(int x, int y);
void putQueue(int n);
int main() {
// cin >> N;
N = 13;
memset(arr, '\0', sizeof(arr));
putQueue(1);
cout << cnt << endl;
return 0;
}
bool is_alright(int x, int y) {
bool ans = true;
//行
//不会出现
//列
for(int y1 = 1; y1 < y; y1++) {
if(arr[y1][x] == 1) {
ans = false;
break;
}
}
//斜,左上到右下
for(int y1 = y - 1, x1 = x - 1; y1 > 0 && x1 > 0; y1--, x1--) {
if(arr[y1][x1] == 1) {
ans = false;
break;
}
}
//我目前只考虑左上的,右下部分我认为没有必要,回溯再造
//斜,右上到左下
for(int y1 = y - 1, x1 = x + 1; y1 > 0 && x1 <= N; y1--, x1++) {
if(arr[y1][x1] == 1) {
ans = false;
break;
}
}
return ans;
}
void putQueue(int n) {
if(n == N + 1) {
if(cnt < 3) {
for(int y1 = 1; y1 <= N; y1++) {
for(int x1 = 1; x1 <= N; x1++) {
if(arr[y1][x1] == 1) {
if(y1 != N) {
cout << x1 << " ";
} else {
cout << x1;
}
break;
}
}
}
cout << endl;
}
cnt++;
// cout << "cnt= " << cnt << endl;
} else {
for(int x1 = 1; x1 <= N; x1++) {
if(is_alright(x1, n) == true) {
// cout << "n= " << n << " x1= " << x1 << endl;
arr[n][x1] = 1;
putQueue(n + 1);
arr[n][x1] = 0;
}
}
}
}
刷题
心得
- 第1题,八皇后扩大到n皇后,n = 16(max)时TLE,算了算了
- 第2题,2n皇后,在n皇后的满足前提下,嵌套一个n皇后,很easy,如果n皇后很熟悉的话
- 第3题,很easy,按要求模拟就行
- 第4题,很easy的模拟,只是一个点居然卡了我小半个小时,但是的确很难想到…
小结
今天被某个作业整崩溃了,苦笑,做得不多,明天赶进度
“业精于勤荒于嬉,行成于思毁于随”
小蒟蒻一个月,冲省一!