7-1 约瑟夫环问题

文章描述了一个游戏过程,n个小孩围成一圈,按顺序从1到m报数,报到m的小孩出列。问题是如何确定每个小孩的出列顺序。这涉及递归或循环逻辑的应用。
摘要由CSDN通过智能技术生成

n个小孩围成一圈,从第一个小孩开始从1到m报数,报到m的小孩出列,下一个小孩继续从1开始报数(出列的小孩不参与报数)。问小孩的出列顺序。

输入格式:

输入两个整数,第一个整数代表n,第二个整数代表m

输出格式:

输出从第一个小孩开始的出列顺序,以逗号分隔

输入样例:

6 
3

输出样例:

6,4,1,3,5,2
//假的
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
约瑟夫环是一个古老的数学问题,该问题最早由约瑟夫·弗拉维奥于1世纪通过犹太历史记载引入数学。问题的背景是:在古代,有一个40个人组成的团体,他们在围成一个圆圈坐下,从某个人开始报数,报到某个数的人将被淘汰。然后,从下一个人开始重新报数,再次报到某个数的人又被淘汰。如此循环,直到只剩下一个人为止。 这个问题可以用数学的方式进行求解。我们可以使用递归的方法来解决。假设初始位置为0,报到第m个人就出列,现在求剩下的最后一个人的位置。 首先,我们可以观察到,每次淘汰的人在他前任的基础上向前移动了m位,同时,由于圆圈的连续性,还需要将当前位置对总人数取余。因此,第一轮结束后,第一个出列的人的位置为m-1。接下来,我们可以继续观察,第二轮开始时,剩下的人的位置相当于前一轮剩下人的位置再向前移动m位取余,即为(m-1+m) mod n,其中n为前一轮剩下的人数,也就是总人数。 按照上述的计算逻辑和递归的方法,我们可以得到第k轮淘汰之后剩下的人的位置为: f(1) = 0 f(k) = (f(k-1) + m) mod n 通过以上的递归关系,我们可以迭代求解,直到最后一轮淘汰,剩下的人的位置即为答案。 总结起来,约瑟夫环是一个经典的数学问题,通过构建递归关系并利用数学计算,我们可以求解出最后一个留下来的人在圆圈中的位置。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白宇航(互关版)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值