机器学习概述
原文地址链接: https://kashima19960.github.io/2024/07/18/人工智能/8.机器学习概述,一般有最新的修改都是在我的个人博客里面,所以在当前平台的更新会比较慢,请见谅😃
概述
本章主要介绍的机器学习的概念、发展历程、发展趋势、相关应用,着重拓展机监督学习和无监督学习的相关知识。
重点:机器学习的定义和应用;
难点:机器学习算法及分类。
机器学习 - 重要性
MachineLeaning出现前
自从50年代以后,AI的发展就磕磕碰碰,没达到足够震撼从早期的逻辑推理,到中期的专家系统,这些科研进步确实使我们离机器的智能有点接近了,但还有一大段距离
MachineLeaning出现后
直到机器学习诞生以后,人工智能界感觉终于找对了方向。基于机器学习的图像识别和语音识别在某些垂直领域达到了跟人相媲美的程度。机器学习使人类第一次如此接近AI的梦想。
机器学习 - 类比人脑思考与决策
机器善于处理数据不断提高性能
人类学习利用经验不断提高性能
思考:能否把“经验”变成数据,让机器可以“模仿”人类进行学习?
机器学习 - 何谓智慧
人类区别于其他物体(植物,动物)的最主要区别是 “智慧”。智慧是对生活的感悟,是对人生的积淀与思考,这与我们机器学习的思想何其相似?通过经验获取规律,指导人生与未来。没有经验就没有智慧。学习沉淀,总结规律、产生决策
- 是计算能力么,应该不是,心算速度快的人我们一般称之为天才。
- 是反应能力么,也不是,反应快的人我们称之为灵敏。
- 是记忆能力么,也不是,记忆好的人我们一般称之为过目不忘。
- 是推理能力么,这样的人我也许会称他智力很高,类似“福尔摩斯”,但不会称他拥有智慧。
- 是知识能力么,这样的人我们称之为博闻广,也不会称他拥有智慧。
机器学习 - 发展历程
机器学习 - 与AI关系
区别1:人工智能是一种广泛的概念,而机器学习是人工智能的一部分。机器学习(ML)是一种人工智能的子领域,它使用算法和统计模型来让计算机自动从数据中学习,其目 标是让计算机自动发现数据中的模式和规律,从而可以预测未来的结果。
区别2:人工智能需要程序员来编写算法和规则,而机器学习则是让计算机自己学习。这意味着,机器学习算法可以从数据中自动发现模式和规律,而不需要手动编写规则。
机器学习 - 定义
定义:机器学习(Machine Learning)本质上就是让计算机在数据中学习规律,并根据所得到的规律对未来数据进行预测。
基本思路:让机器模仿人类学习行为的过程。如人类解决新问题一般是通过“经验归纳,总结规律,从而预测未来”的过程。则机器学习的基本过程如下:
机器学习 - 工作原理
定义:机器学习(Machine Learning)本质上就是让计算机在数据中学习规律,并根据所得到的规律对未来数据进行预测。
Machine Learning = task + data + objective + algorithm
–Tom Mitchell
机器学习 - 分类
机器学习 - 分类(3种重点类型)
分类1 - 监督学习
定义:是使用标记数据集来训练算法,以便对数据进行分类或准确预测结果。当输入数据被输入到模型中时,