DeepSeek 2.5本地部署的实战教程

  大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。

  本文主要介绍了DeepSeek 2.5本地部署的实战教程,希望对学习大语言模型的同学们有所帮助。

在这里插入图片描述

1. 介绍

  DeepSeek模型性价比比较高,我经常用它来处理数据清洗、数据提取等较为复杂的任务。当然,如果不差钱的话,还是ChatGPT-O1或者Claude 3.5效果更佳。由于在部分场景下涉及到数据安全问题,所以在本地部署是比较稳妥的解决方案。

  DeepSeek-V2.5 不仅保留了原有 Chat 模型的通用对话能力和 Coder 模型的强大代码处理能力,还更好地对齐了人类偏好。此外,DeepSeek-V2.5 在写作任务、指令跟随等多个方面也实现了大幅提升。具体效果如下所示:

内容概要:本文主要介绍了一个基于AI的深度学习语言模型DeepSeek本地部署指南。内容分为四个主要部分。首先介绍了Ollama的安装流程,包括前往官方网站选择匹配系统的软件包下载,并依据不同操作系统完成相应的安装操作。接下来重点阐述了针对不同硬件条件下载合适的DeepSeek版本的方法,从选择所需规模(参数量)到执行具体加载命令均作出详述。还提及了为了方便用户进一步利用Docker以及一个叫Open WebUI工具来进行容器管理和服务提供所做出的一些辅助性指导措施。最后简要说明了怎样在命令终端启动该AI助手以及在浏览器界面上完成初次登录验证。 适合人群:想要将大型预训练AI语言模型应用于本地环境的研究员或者开发者;具有一定软硬件搭建基础知识的人士。 使用场景及目标:适用于想要快速把玩大型语言模型却苦于云服务成本太高或是希望提高对LLM底层机制的理解从而更好地开展后续科研工作的用户。他们能够通过这个指南学会一套通用的大规模语言模型部署解决方案,为将来类似项目的实施打下坚实的基础。 阅读建议:读者应当注意官方提供的最新资料和社区讨论来补充本文未能涉及的部分并且持续关注产品迭代升级消息,另外考虑到文中存在大量的命令操作,请确保实验环境下操作的安全性和可控性,严格按照说明执行各项任务。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

herosunly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值