【Python配置PySpark和安装Spark环境】

1.租用Autodl

        前往Autodl官网(AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL)租用CPU服务器,打开Jupyter Lab服务器地址,进入到Jupyter界面。

2.安装Jdk环境

        Spark是基于Java开发的,因此需要使用java环境,在Autodl服务器上面,直接使用apt install命令即可安装OpenJDK。

sudo apt update
sudo apt upgrade
sudo apt-get install openjdk-8-jdk
#sudo apt install openjdk-17-jdk

3.使用pip命令安装PySpark

pip install pyspark

4.完成安装并验证

pyspark

Python配置Apache PySpark,你需要首先安装`PySpark`库,它是一个Python接口,用于与Apache Spark交互。以下是简单的步骤: 1. **安装PySpark**: - 如果你想通过pip安装,可以运行 `pip install pyspark`,这将下载并安装最新版本的PySpark。 - 或者访问Spark官网下载对应版本的`py4j``sparkxerial`包,然后解压到`$SPARK_HOME/python``$SPARK_HOME/jars`目录下。 2. **环境变量设置**: - 设置`SPARK_HOME`环境变量指向你的Spark安装路径,例如:`export SPARK_HOME=/path/to/spark` - 为了Python能找到PySpark,还需要设置`PYSPARK_PYTHON``PYSPARK_DRIVER_PYTHON`(如果你打算使用Jupyter notebook,则不需要设置后者)。 3. **初始化**: - 在Python脚本开始时,通常会导入`pyspark.sql.SparkSession`并创建一个新的SparkSession,如下所示: ```python from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("MyApp") \ .master("local[2]") or "local" for local testing \ .getOrCreate() ``` 4. **配置其他选项** (可选): - 可以使用`.config()`方法来设置Spark的各种配置,如`spark.jars.packages`来添加额外的依赖库。 5. **使用Spark API**: 现在你可以使用`spark`对象来执行各种Spark操作,如数据读取、处理保存等。 记得根据你的系统需求Spark集群情况进行相应的调整。完成后,可以检查是否成功连接到Spark,通常`spark.sparkContext.appName`应该显示你设置的app名称。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客小云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值