宝藏速成秘籍(4)希尔排序法

一、前言

1.1、概念

       希尔排序 (Shell Sort) 是插入排序的一种改进版本。它通过比较和交换非相邻的元素来移动元素,大幅减少元素的移动次数,从而提升了效率。

1.2、排序步骤 

1. 选择初始间隔 gap

2. 分组并进行插入排序

3. 减小间隔 gap

4.分组并进行插入排序

5.再次减小间隔 gap

6.分组并进行插入排序

 二、方法分析

       希尔排序的核心思想是使数组中任意间隔为 h 的元素都是有序的,随着算法的进行逐渐减小 h  直到 h = 1 。希尔排序法是一种基于插入排序的排序算法,通过对间隔进行分组来提升排序效率。尽管其最坏情况下的时间复杂度可能较高,但在实际应用中,通过选择合适的增量序列,希尔排序能表现出较好的性能。

三、举例说明 

以数组[9, 6, 11, 3, 5, 12, 10]为例,我们通过希尔排序对其进行排序。

首先,选择一个合适的步长序列。常用的步长序列有希尔增量序列(n/2,n/4,...,1)和Hibbard增量序列(2^k-1,2^(k-1)-1,...,1),其中n为数组长度。我们选择希尔增量序列。

第一轮排序,步长为3。将数组分为3个子序列:

[9, 3] [6, 5] [11, 12, 10]

对每个子序列使用插入排序,得到:

[3, 9] [5, 6] [10, 11, 12]

此时,每个子序列都已经排序。

第二轮排序,步长为1。将整个数组视为一个子序列,使用插入排序,得到最终的排序结果:

[3, 5, 6, 9, 10, 11, 12]

通过希尔排序,我们将乱序的数组按照一定的步长逐渐进行排序,最终得到了有序的数组。

 四、编码实现 

以下是 Java 实现的希尔排序算法示例:

public class ShellSort {

    // 希尔排序算法
    public static void shellSort(int[] array) {
        int n = array.length;

        // 选择间隔的增量序列,通常初始值选为数组长度的一半
        for (int gap = n / 2; gap > 0; gap /= 2) {
            // 对每一个间隔序列进行插入排序
            for (int i = gap; i < n; i++) {
                int temp = array[i];
                int j;
                // 在间隔序列中寻找合适的插入位置
                for (j = i; j >= gap && array[j - gap] > temp; j -= gap) {
                    array[j] = array[j - gap];
                }
                // 将元素插入合适位置
                array[j] = temp;
            }
        }
    }

    // 测试希尔排序算法
    public static void main(String[] args) {
        int[] array = {12, 34, 54, 2, 3, 1, 8, 23};
        System.out.println("排序前的数组:");
        for (int i : array) {
            System.out.print(i + " ");
        }
        System.out.println();

        shellSort(array);

        System.out.println("排序后的数组:");
        for (int i : array) {
            System.out.print(i + " ");
        }
    }
}

运行结果: 

 

 五、方法评价 

1. 时间复杂度
希尔排序的时间复杂度取决于选择的增量序列(间隔序列)。常见的增量序列有:
-原始希尔增量序列:( gap = n / 2, n / 4, ..., 1 )
-Hibbard 增量序列:( gap = 1, 3, 7, ..., 2^k - 1 )
-Sedgewick 增量序列:( gap = 1, 5, 19, ...)

不同增量序列对算法的性能有显著影响。以下是常见增量序列的时间复杂度分析:
-原始希尔增量序列:最坏情况下时间复杂度为 O(n^2) 
-Hibbard 增量序列:最坏情况下时间复杂度为 O(n^{3/2})
-Sedgewick 增量序列:最坏情况下时间复杂度为 O(n^{4/3})

2. 空间复杂度
希尔排序是原地排序算法,不需要额外的辅助空间,空间复杂度为 O(1)。

3. 稳定性
希尔排序不是稳定排序算法。由于间隔插入排序可能会改变相同元素的相对顺序,因此希尔排序可能会破坏原有的元素相对顺序。

4.. 优缺点
优点:
-适用于中等规模的数据排序:比简单的插入排序和选择排序效率更高。
-原地排序:不需要额外的内存空间。
-较快的平均性能:通过分组和间隔排序,提高了排序效率,尤其在数据部分有序时表现出色。

缺点:
-不稳定:不能保证相同元素的相对顺序。
-复杂度分析复杂:不同增量序列对时间复杂度的影响显著,选择合适的增量序列是个难题。

 结语 

自信一点,你已经很棒了

坚持下去,你会变得更好

!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT 青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值