题目来源:王晓东《算法设计与分析》
一辆汽车加满油后可行驶 n公里。旅途中有若干个加油站。设计一个有效算法,指出应
在哪些加油站停靠加油,使沿途加油次数最少。
输入格式:
第一行有 2 个正整数n和 k(k<=1000 ),表示汽车加满油后可行驶n公里,且旅途中有 k个加油站。
第二行有 k+1 个整数,表示第 k 个加油站与第k-1 个加油站之间的距离。
第 0 个加油站表示出发地,汽车已加满油。
第 k+1 个加油站表示目的地。
输出格式:
输出最少加油次数。如果无法到达目的地,则输出“No Solution!”。
输入样例:
7 7
1 2 3 4 5 1 6 6
输出样例:
4
分析
这个问题展示了贪心算法的典型应用。关键是使用"尽可能延迟加油"的策略,即只在必要时才加油,这样可以确保总加油次数最少。
在实现过程中,我们需要注意:
- 首先检查是否存在无法到达的情况:如果任意两个连续加油站之间的距离大于 n,则无解。
- 使用贪心策略:从起点出发,每次尽可能走得更远,只有当剩余油量不足以到达下一个加油站时才加油。
简单来说:从起点出发,每次尽可能走得更远,只有当剩余油量不足以到达下一个加油站时才在当前加油站加油。
代码实现
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int k = sc.nextInt();
int[] distance = new int[k + 1];
for (int i = 0; i <= k; i++) {
distance[i] = sc.nextInt();
// 检查是否有无法到达的情况
if (distance[i] > n) {
System.out.println("No Solution!");
return;
}
}
int min = 0;
int cur = 0;
for (int i = 0; i <= k; i++) {
cur += distance[i];
if(cur>=n){
min++;
cur = distance[i];
}
}
System.out.println(min);
}
}