回溯算法 131.分割回文串

在处理组合问题的时候,递归参数需要传入startIndex,表示下一轮递归遍历的起始位置,这个startIndex就是切割线。

所以终止条件代码如下:

void backtracking (const string& s, int startIndex) {
    // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
    if (startIndex >= s.size()) {
        result.push_back(path);
        return;
    }
}

 

  • 单层搜索的逻辑

来看看在递归循环中如何截取子串呢?

for (int i = startIndex; i < s.size(); i++)循环中,我们 定义了起始位置startIndex,那么 [startIndex, i] 就是要截取的子串。

首先判断这个子串是不是回文,如果是回文,就加入在vector<string> path中,path用来记录切割过的回文子串。

代码如下:

for (int i = startIndex; i < s.size(); i++) {
    if (isPalindrome(s, startIndex, i)) { // 是回文子串
        // 获取[startIndex,i]在s中的子串
        string str = s.substr(startIndex, i - startIndex + 1);
        path.push_back(str);
    } else {                // 如果不是则直接跳过
        continue;
    }
    backtracking(s, i + 1); // 寻找i+1为起始位置的子串
    path.pop_back();        // 回溯过程,弹出本次已经填在的子串
}

注意切割过的位置,不能重复切割,所以,backtracking(s, i + 1); 传入下一层的起始位置为i + 1

class Solution {
public:
    vector<string> path;
    vector<vector<string>> result;
    void backstring(string s,int startIndex)
    {
        if(startIndex>=s.size())
        {
            result.push_back(path);
            return;
        }
        for(int i=startIndex;i<s.size();i++)//横向遍历
        {
            if(isPalindrome(s,startIndex,i))//回溯算法中 横向就看i 纵向看回溯
            {
                string s1=s.substr(startIndex,i-startIndex+1);//判断(start,i] 判断的是i+1的情况
                //substr() 是 C++ 标准库中的一个函数,用于从一个字符串中提
                //从startIndex开始提取 提取长度为i-startIndex+1
                path.push_back(s1);
            }
            else{continue;}//如果不是直接continue 不会导致path有多余的数据因为这里path还没有push_back新的数据
            //里面的还是已经是回文子串的数据 因此会继续到横向到下一个
            backstring(s,i+1);//纵向遍历 寻找i+1为起始位置的子串
            //纵向递归中 起初i=0;由于i+1为startIndex=1 传入导致了第二层是i=1开始for 切割点也是i=1
            //横向遍历i++,i=2 此时的下一层会导致i+1 i=3 就是末尾是切割点
            //再下一层纵向遍历i=2,从i=2开始for 到达终点 横向遍历i++ i=2
            path.pop_back();//回退
        }


    }
    bool isPalindrome(const string &s,int start,int end)//判断是否是字符串
    {
        for(int i=start,j=end;i<j;i++,j--)
        {
            if(s[i]!=s[j])
                return false;
        }
        return true;
    }


    vector<vector<string>> partition(string s) {
         result.clear();
        path.clear();
        backstring(s, 0);
        return result;

    }
};

动态规划方法可以用来解决分割回文串的问题。可以根据给定的字符串s,使用动态规划找到所有可能的回文子串。 首先,我们可以定义一个二维数组dp,其中dp[i][j]表示字符串s从索引i到j的子串是否是回文串。对于任意的i和j,如果s的第i个字符和第j个字符相等,并且s的第i+1个字符到第j-1个字符是回文串,则dp[i][j]为true。 然后,我们可以使用动态规划填充dp数组。我们可以从字符串s的末尾开始遍历,每次遍历一个字符。对于每个索引i,我们再从i开始向右遍历,直到字符串的末尾。对于每个索引i和j,我们检查字符串s从索引i到j是否是回文串。如果是回文串,则将这个子串添加到结果集中,并继续向右遍历,搜索下一个可能的回文子串。 最后,当我们遍历完整个字符串s时,我们就可以得到所有可能的分割方案。每个分割方案都是由一组回文子串组成的。 下面是一个使用动态规划的实现示例代码: ```cpp class Solution { public: vector<vector<string>> partition(string s) { vector<vector<string>> result; vector<string> path; vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false)); backtracking(s, 0, path, result, dp); return result; } void backtracking(string const& s, int startIndex, vector<string>& path, vector<vector<string>>& result, vector<vector<bool>>& dp) { if (startIndex >= s.size()) { result.push_back(path); return; } for (int i = startIndex; i < s.size(); i++) { if (s[startIndex == s[i && (i - startIndex <= 2 || dp[startIndex + 1][i - 1])) { dp[startIndex][i = true; path.push_back(s.substr(startIndex, i - startIndex + 1)); backtracking(s, i + 1, path, result, dp); path.pop_back(); } } } }; ``` 这是一个基于回溯和动态规划的算法,它可以找到字符串s所有可能的分割方案,使得每个子串都是回文串。你可以根据自己的需求使用这个算法来解决分割回文串的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [131. 分割回文串 回溯 c++](https://blog.csdn.net/qq_39993896/article/details/127132759)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [LeetCode-分割回文串C++)](https://blog.csdn.net/weixin_42817333/article/details/125468202)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值