DPM-Solver
论文地址:https://arxiv.org/pdf/2206.00927
公式来自于论文
1.引入
扩散模型是一种近几年很火的生成模型,大概思路就是正向加噪与反向去噪生成图片。想必接触扩散模型,大家一定被里面的数学推导吓到了,本文尽量避开数学推导的具体过程,我们先从结论入手,大概的去了解DPM-Solver这篇论文。本人也是初学者,如果有问题,欢迎一起探讨。文章提到的推导部分,如果后续有时间会补充上
阅读本文你需要提前知道:扩散模型的核心思想;什么是SDE与ODE。
2.前置知识
1.扩散模型可以用随机微分方程描述(为什么可以用随机微分方程描述?这里暂不赘述)
前向SDE:
由前向SDE可以推导出逆向SDE(推导1):
f(t),g(t):
其中αt与σt是扩散前向过程中与噪音有关的函数,来自于噪音表(取决于前向用什么样的策略加噪),是关于时间t的函数
不同的策略有不同的加噪方式,比如SMLD的单步加噪公式:
x i = x i − 1 + ( σ i 2 − σ i − 1 2 ) z i − 1 x_i=x_{i-1}+\sqrt{(\sigma_i^2-\sigma_{i-1}^2)}z_{i-1} xi=xi−1+