扩散模型采样DPM-Solver:避开复杂数学推导通俗理解

DPM-Solver
论文地址:https://arxiv.org/pdf/2206.00927
公式来自于论文

1.引入

扩散模型是一种近几年很火的生成模型,大概思路就是正向加噪与反向去噪生成图片。想必接触扩散模型,大家一定被里面的数学推导吓到了,本文尽量避开数学推导的具体过程,我们先从结论入手,大概的去了解DPM-Solver这篇论文。本人也是初学者,如果有问题,欢迎一起探讨。文章提到的推导部分,如果后续有时间会补充上

阅读本文你需要提前知道:扩散模型的核心思想;什么是SDE与ODE。

2.前置知识

1.扩散模型可以用随机微分方程描述(为什么可以用随机微分方程描述?这里暂不赘述)

前向SDE:

在这里插入图片描述

由前向SDE可以推导出逆向SDE(推导1):

在这里插入图片描述

f(t),g(t):

在这里插入图片描述

其中αt与σt是扩散前向过程中与噪音有关的函数,来自于噪音表(取决于前向用什么样的策略加噪),是关于时间t的函数

在这里插入图片描述

不同的策略有不同的加噪方式,比如SMLD的单步加噪公式:
x i = x i − 1 + ( σ i 2 − σ i − 1 2 ) z i − 1 x_i=x_{i-1}+\sqrt{(\sigma_i^2-\sigma_{i-1}^2)}z_{i-1} xi=xi1+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值