# Leecode11.盛最多水的容器详细题解及算法思路

Leecode11.盛最多水的容器详细题解及算法思路

题目
  • 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。

​ 说明:你不能倾斜容器。

  • 示例1:

    输入:height = [1,1]
    输出:1

  • 提示:

    • n == height.length
    • 2 <= n <= 105
    • 0 <= height[i] <= 104
解题思路:
  • 设两指针 i , j ,指向的水槽板高度分别为 h[i] , h[j] ,此状态下水槽面积为 S(i,j) 。由于可容纳水的高度由两板中的 短板 决定,因此可得如下 面积公式 :

    S(i, j) = min(h[i], h[j]) × (j - i)

    **看成底(j-i) 乘 高(短板)**更好理解下面的思路

  • 在每次移动短板或者长版都会使两版之间的距离 -1,

    关键:面积的变化规律:

    • 如果移动长板,相当于 高不变或者减小,而底-1,导致面积一定会减小
    • 如果移动短板,面积可能变大,也可能变小,也可能不变
  • 并且移动短板,记录面积的最大值,直到两板相遇

Java代码实现
  • class Solution {
        public int maxArea(int[] height) {
            int max=0,i=0,j=height.length-1;
            while(i<j){
                if(height[i]<height[j])
                    max=Math.max(max,(j-i)*height[i++]);
                else
                    max=Math.max(max,(j-i)*height[j--]);
            }
            return max;
        }
    }
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值