Leecode11.盛最多水的容器详细题解及算法思路
题目
- 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。
说明:你不能倾斜容器。
-
示例1:
输入:height = [1,1]
输出:1 -
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
解题思路:
-
设两指针 i , j ,指向的水槽板高度分别为 h[i] , h[j] ,此状态下水槽面积为 S(i,j) 。由于可容纳水的高度由两板中的 短板 决定,因此可得如下 面积公式 :
S(i, j) = min(h[i], h[j]) × (j - i)
**看成底(j-i) 乘 高(短板)**更好理解下面的思路
-
在每次移动短板或者长版都会使两版之间的距离 -1,
关键:面积的变化规律:
- 如果移动长板,相当于 高不变或者减小,而底-1,导致面积一定会减小
- 如果移动短板,面积可能变大,也可能变小,也可能不变
-
并且移动短板,记录面积的最大值,直到两板相遇
Java代码实现
-
class Solution { public int maxArea(int[] height) { int max=0,i=0,j=height.length-1; while(i<j){ if(height[i]<height[j]) max=Math.max(max,(j-i)*height[i++]); else max=Math.max(max,(j-i)*height[j--]); } return max; } }